[1] Banihashemi, N. and Kaya, C.Y. Inexact restoration for Euler discretization of box-constrained optimal control problems, J. Optim. Theory Appl. 156 (2013), 726–760.
[2] Dontchev, A.L. and Hager, W.W. The Euler approximation in state con strained optimal control problems, Math. Comput. 70 (2001), 173–203.
[3] Dontchev, A.L., Hager, W.W. and Malanowski, K. Error bound for Euler approximation of a state and control constrained optimal control problem, Numer. Funct. Anal. Optim. 21 (6) (2000), 653–682.
[4] Fourer, R., Gay, D.M. and Kernighan, B.W. AMPL: A modeling languag for mathematical programming, 2nd ed. Brooks/Cole, New York 2003.
[5] Ghane-Kanafi, A. and Khorram, E. A new scalarization method for finding the efficient frontier in non-convex multi-objective problems, Appl. Math. Model. 39 (2015), 7483–7498.
[6] Hwang, C.L. and Masud, A.S.M. Multiple objective decision making, methods and applications: A state-of-the-art survey, Springer-Verlag, 1979.
[7] Ida, M. Multi-objective optimal control through linear programming with interval objective function, Proceedings of the 36th SICE Annual Confer ence, 1997.
[8] Jaimes, A.L., Santana Quintero, L.V. and Coello, C.C.A. Ranking methods in many-objective evolutionary algorithms, Nature-Inspired Algorithms for Optimisation. (2009), 413–434.
[9] Kalai, E. Proportional solutions to bargaining situations: Interpersonal utility comparisons, Econometrica. 45 (7) (1977), 1623–1630.
[10] Kaya, C.Y. Inexact restoration for Runge–Kutta discretization of optimal control problems, SIAM J. Numer. Anal. 48 (4) (2010), 1492–1517.
[11] Kaya, C.Y. and Martinez, J.M. Euler discretization for inexact restoration and optimal control, J. Optim. Theory Appl. 134 (2007), 191–206.
[12] Logist, F. and Van Impe, J. Multiple objective optimization of cyclic chemical systems with distributed parameters, Control. Appl. Optim. 7(2009), 295–300.
[13] Logist, F., Houska, B., Diehl, M. and Van Impe, J.F. Fast Pareto set generation for nonlinear optimal control problems with multiple objectives, Struct. Multidiscip. Optim. 42, (2010) 591–603.
[14] Logist, F., Vallerio, M., Houska, B., Diehl, M. and Van Impe, J. Multi objective optimal control of chemical processes using ACADO toolkit, Com put. Chem. Eng. 37 (2012) 191–199.
[15] Mality, K. and Maiti, M. Numerical approach of multi-objective optimal control problem in imprecise environment, Fuzzy Optim. Decis. Ma. 4(2005), 313–330.
[16] Ober-Blobaum, S., Ringkamp, M. and Zum, G. Felde solving multiobjective optimal control problems in space mission design using discrete me chanics and reference point techniques, 51st IEEE Conference on Decision
and Control, (2012), 5711–5716.
[17] Ohno, H., Nakanishi, E. and Takamatsu, T. Optimal control of a semi batch fermentation, Biotechnol. Bioeng. 18 (1976), 847–864
[18] Peitz, S. and Dellnitz, M, A survey of recent trends in multiobjective optimal control–surrogate models, feedback control and objective reduction, Math. Comput. Appl, (2018), 1–33.
[19] Severino Leal, U.A., Silva, G.N. and Lodwick, W. A. Multi-objective optimization in optimal control problem with interval-valued objective function, Proceeding Series of the Brazilian Society of Applied and Computational
Mathematics. 3 (1) (2015).
[20] Vassiliadis, V., Balsa-Canto, E. and Banga, J. Second-order sensitivities of general dynamic systems with application to optimal control problems, Chem. Eng. Sci. 54 (1999), 3851–3860.
[21] Wächter, A. and Biegler, L.T. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear program ming, Math. Program. 106 (2006), 25–57.
[22] Zarei, H. and Rezai Bahrmand, M. Multi-objective optimal control of the linear wave equation, Ain Shams Eng. J. 5 (2014), 1299–1305.
[23] Zitzler, E., Laumanns, M. and Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm, Zurich, Switzerland: Swiss Federal Institute Technology 2001.
Send comment about this article