[1] Adomian, G. The diffusion-Brusselator equation, Comput. Math. with Appl. 29(5) (1995), 1–3.
[2] Aliyi Koroche, K. and Muleta Chemeda, H. Sixth-order compact finite difference method for solving KDV-Burger equation in the application of wave propagations, Iran. J. Numer. Anal. Optim. 12(2) (2022), 277–300.
[3] Bahadır, A.R. A fully implicit finite-difference scheme for two-dimensional Burgers’ equations, Appl. Math. Comput. 137(1) (2003), 131–137.
[4] Baharloui, S., Mokhtari, R. and Chegini, N. A stable numerical scheme based on the hybridized discontinuous Galerkin method for the Ito-type coupled KdV system, Commun. Appl. Math. Comput. 4(4) (2022), 1351–1373.
[5] Burgers, J.M. A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. (1948), 171–199.
[6] Castillo, P. A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems, Appl. Numer. Math. 56(10-11) (2006), 1307–1313.
[7] Castillo, P. and Gómez, S. Conservative super-convergent and hybrid discontinuous Galerkin methods applied to nonlinear Schrödinger equa-tions, Appl. Math. Comput. 371 (2020), 124950.
[8] Chand, A. and Saha Ray, S. Numerical simulation of Allen–Cahn equa-tion with nonperiodic boundary conditions by the local discontinuous Galerkin method, Int. J. Mod. Phys. B. 37(02) (2023), 2350019.
[9] Cockburn, B., Fu, G. and Qiu, W. A note on the devising of super-convergent HDG methods for Stokes flow by M-decompositions, IMA J. Numer. Anal. 37(2) (2017), 730–749.
[10] Cockburn, B., Hou, S. and Shu, C.W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comput. 54(190) (1990), 545–581.
[11] Cockburn, B. and Gopalakrishnan, J. A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. 42(1) (2004), 283–301.
[12] Cockburn, B., Gopalakrishnan, J. and Lazarov, R. Unified hybridiza-tion of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47(2) (2009),1319–1365.
[13] Cockburn, B., Gopalakrishnan, J. and Sayas, F.J. A projection-based error analysis of HDG methods, Math. Comput. 79(271) (2010), 1351–1367.
[14] Cockburn, B., Guzmán, J., Soon, S.C. and Stolarski, H.K. An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal. 47(4) (2009), 2686–2707.
[15] Cockburn, B. and Shu, C.W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35(6) (1998), 2440–2463.
[16] Cockburn, B. and Shu, C.W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys. 141(2) (1998), 199–224.
[17] Cole, J.D. On a quasi-linear parabolic equation occurring in aerodynam-ics, Q. Appl. Math. 9(3) (1951), 225-236.
[18] Debnath, L. Nonlinear partial differential equations for scientists and engineers, Third edition. Birkhäuser/Springer, New York, 2012.
[19] El-Sayed, S.M. and Kaya, D. On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method, Appl. Math. Comput. 158(1) (2004), 101–109.
[20] Fletcher, C.A. Generating exact solutions of the two-dimensional Burg-ers’ equations, Int. J. Numer. Methods Fluids. 3 (1983), 213–216.
[21] Giacomini, M., Karkoulias, A., Sevilla, R. and Huerta, A. A supercon-vergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor, J. Sci. Comput. 77(3) (2018), 1679–1702.
[22] Giacomini, M., Sevilla, R. and Huerta, A. Tutorial on Hybridizable Dis-continuous Galerkin (HDG) formulation for incompressible flow prob-lems, Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, (2020), 163–201.
[23] Khater, A.H., Temsah, R.S. and Hassan, M. A Chebyshev spectral col-location method for solving Burgers’-type equations, J. Comput. Appl. Math. 222(2) (2008), 333–350.
[24] Kumar, V., Singh, S. and Koksal, M.E. A composite algorithm for nu-merical solutions of two-dimensional coupled Burgers equations, J. Math. (2021), 1–13.
[25] Ling, D., Shu, C.W. and Yan, W. Local discontinuous Galerkin methods for diffusive-viscous wave equations, J. Comput. Appl. Math. 419 (2023), 114690.
[26] Logan, J.D. An introduction to nonlinear partial differential equations, John Wiley and Sons (2008).
[27] Mokhtari, R. and Mohseni, M. A meshless method for solving mKdV equation, Comput. Phys. Commun. 183(6) (2012), 1259–1268.
[28] Mokhtari, R., Toodar, A.S. and Chegini, N.G. Application of the gen-eralized differential quadrature method in solving Burgers’ equations, Commun. Theor. Phys. 56(6) (2011), 1009.
[29] Nguyen, N.C. and Peraire, J. Hybridizable discontinuous Galerkin meth-ods for partial differential equations in continuum mechanics, J. Comput. Phys. 231(18) (2012), 5955–5988.
[30] Peraire, J., Nguyen, N. and Cockburn, B. A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations, In 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 363 (2010).
[31] Rong-Pei, Z., Xi-Jun, Y. and Guo-Zhong, Z. Local discontinuous Galerkin method for solving Burgers and coupled Burgers equations, Chin. Phys. B. 20(11) (2011), 110205.
[32] Sevilla, R., Giacomini, M., Karkoulias, A. and Huerta, A. A supercon-vergent hybridisable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Methods Eng. 116(2) (2018), 91–116.
[33] Sevilla, R. and Huerta, A. Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems, Advanced Finite El-ement Technologies, (2016), 105–129.
[34] Shin, D., Jeon, Y. and Park, E.J. Analysis of hybrid discontinuous Galerkin methods for linearized Navier–Stokes equations, Numer. Meth-ods Partial Differ. Equ. 39(1) (2023), 304–328.
[35] Srivastava, V.K. and Tamsir, M. Crank-Nicolson semi implicit approach for numerical solutions of two-dimensional coupled nonlinear Burgers’ equations, Int. J. Appl.Mech. 17(2) (2012), 571.
[36] Vila-Pérez, J., Giacomini, M., Sevilla, R. and Huerta, A. Hybridisable discontinuous Galerkin formulation of compressible flows, Arch. Com-put. Methods Eng. 28(2) (2021), 753–784.
[37] Williams, D. An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier-Stokes equations, Math. Comput. 87(309) (2018), 95–121.
[38] Yang, X., Ge, Y. and Lan, B. A class of compact finite difference schemes for solving the 2D and 3D Burgers’ equations, Math. Comput. Simul. 185 (2021), 510–534.
[39] Zogheib, B., Tohidi, E., Baskonus, H.M. and Cattani, C. Method of lines for multi-dimensional coupled viscous Burgers’ equations via nodal Jacobi spectral collocation method, Phys. Scr. 96(12) (2021), 124011.
Send comment about this article