1. Baker, T. and Paul, C. Parallel continuous Runge-Kutta methods and vanishing lag delay differential equations, Adv. Comput. Math. 1 (3) (1993), 367–394.
2. Balochian, S. and Baloochian, H. Social mimic optimization algorithm and engineering applications, Expert Syst. Appl. 134 (2019), 178–191.
3. Banks, H. Necessary conditions for control problems with variable time lags, SIAM J. Control Optim. 6 (1) (1968), 9–47.
4. Banks, H. and Burns, J.A. Hereditary control problems: Numerical methods based on averaging approximations, SIAM J. Control Optim. 16 (2) (1978), 169–208.
5. Bellen, A. and Zennaro, M. Numerical methods for delay differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.
6. Bouajaji, R., Abta, A., Laarabi, H. and Rachik, M. Optimal control of a delayed alcoholism model with saturated treatment, Differ. Equ. Dyn. Syst. (2021), 1–16.
7. Chen, L. and Wu, Z. Stochastic optimal control problem in advertising model with delay, J. Syst. Sci. Complex 33 (4) (2020), 968–987.
8. Chongyang, L., Zhaohua, G., Kok Lay, T. and Wang, S. Modelling and optimal state-delay control in microbial batch process, Appl. Math. Model, 89 (2021), 792–801.
9. Dadebo, S. and Luus, R. Optimal control of time-delay systems by dynamic programming, Optim. Control. Appl. Methods. 13 (1) (1992), 29–41.
10. Eller, D., Aggarwal, J. and Banks, H. Optimal control of linear time-delay systems, IEEE Trans. Automat. Contr. 14 (6) (1969), 678–687.
11. Ghomanjani, F., Farahi, M. H. and Gachpazan, M. Optimal control of time-varying linear delay systems based on the bezier curves, Int. J. Comput. Appl. Math. 33 (3) (2014), 687–715.
12. Göllmann, L. and Maurer, H. Optimal control problems with time delays: Two case studies in biomedicine, Math. Biosci. Eng. 15 (5) (2009), 11–37.
13. Gooran Orimi, A., Effati, S. and Farahi,M.H. A suboptimal control of linear time-delay problems via dynamic programming, IMA J. Math. Control Inform., 2022.
14. Guinn, T. Reduction of delayed optimal control problems to nondelayed problems, J. Optim. Theory Appl. 18 (3) (1976), 371–377.
15. Haddadi, N., Ordokhani, Y. and Razzaghi, M. Optimal control of delay systems by using a hybrid functions approximation, J. Optim. Theory Appl. 153 (2) (2012), 338–356.
16. Halanay, A., Optimal controls for systems with time lag, SIAM J. Control Optim. 6 (2) (1968), 215–234.
17. Hou, L., Chen, D. and He, C. Finite-time h∞ bounded control of networked control systems with mixed delays and stochastic nonlinearities, Adv. Diff. Equ. 1 (2020), 1–23.
18. Huang, M., Gao, W. and Jiang, Z. P. Connected cruise control with delayed feedback and disturbance: An adaptive dynamic programming approach, Int. J. Adapt. Control Signal Process.33 (2) (2019), 356–370.
19. Ivanov, Anatoli F and Swishchuk, Anatoly V. Optimal control of stochastic differential delay equations with application in economics, International Journal of Qualitative Theory of Differential Equations and Applications 2 (2) (2008), 201–213.
20. Jajarmi, A. and Hajipour, M. An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay, Appl. Math. Model. 40 (4) (2016), 2756–2769.
21. Jajarmi, A. and Hajipour, M. An efficient finite difference method for the time-delay optimal control problems with time-varying delay, Asian J. Control. 19 (2) (2017), 554–563.
22. Jamshidi, M. and Wang, C.M. A computational algorithm for largescale nonlinear time-delay systems, IEEE Trans. Syst. Man Cybern. Syst. 1(1984), 2–9.
23. Jamshidi, M. and Zavarei, M. Suboptimal design of linear control systems with time delay, Proc. Inst. Electr. Eng. 119 (1972), 1743–1746.
4. Kharatishvili, GL. The maximum principle in the theory of optimal processes involving delay, Dokl. Akad. Nauk. 136 (1961), 39–42.
25. Kharatishvili, GL. A maximum principle in extremal problems with delays, Mathematical Theory of Control (1967), 26–34.
26. Kheirabadi, A. A. Mahmoudzadeh Vaziri, and S. Effati, Linear optimal control of time delay systems via hermite wavelet, Numer. Algebra Control Optim. 10 (2) (2020), 143.
27. Khellat, F. Optimal control of linear time-delayed systems by linear Legendre multiwavelets, J. Optim. Theory Appl. 143 (1) (2009), 107–121.
28. Lee, Y. Numerical solution of time-delayed optimal control problems with terminal inequality constraints, Optim. Control Appl. Methods. 14 (3) (1993), 203–210.
29. Malek-Zavarel, L. and Jamshidi, M. Time-delay systems: analysis, optimization and applications, Elsevier Science Inc., 1987.
30. Mansoori, M. and Nazemi, A. R. Solving infinite-horizon optimal control problems of the time-delayed systems by Haar wavelet collocation method, Int. J. Comput. Appl. Math. 35 (1) (2016), 97–117.
31. Mirhosseini-Alizamini, A. M. and Effati, S. An iterative method for suboptimal control of a class of nonlinear time-delayed systems, Int. J. Control. 92 (12) (2019), 2869–2885.
32. Mirhosseini-Alizamini, S. M., Effati, S. and Heydari, A. An iterative method for suboptimal control of linear time-delayed systems, Syst. Control. Lett.82 (2015), 40–50.
33. Mueller, T. Optimal control of linear systems with time lag, Third Annual Allerton Conf. on Circuit and System Theory. (1965), 339–345.
34. Nevers, K. D. and Schmitt, K. An application of the shooting method to boundary value problems for second order delay equations, Aust. J. Math. Anal. Appl. 36 (3) (1971), 588–597.
35. Oǧuztöreli, M.N. A time optimal control problem for systems described by differential difference equations, SIAM J. Appl. Math., Series A: Control. 1 (3)(1963), 290–310.
36. Oǧuztöreli, M.N. Time-lag control systems, Mathematics in Science and Engineering, 24 Academic Press, New York-London 1966.
37. Oh, S. and Luus, R. Optimal feedback control of time-delay systems, AIChE J. 22 (1) (1976), 140–147.
38. Palanisamy, K. and Prasada, R. Optimal control of linear systems with delays in state and control via Walsh functions, In IEE Proceedings D-Control Theory and Applications. 130 (1983), 300–312.
39. Santos, O., Mondié S. and Kharitonov, V. Linear quadratic suboptimal control for time delays systems, Int. J. Control. 82 (1) (2009), 147–154.
40. Santos, O. and Sanchez-Diaz, G. Suboptimal control based on hill-climbing method for time delay systems, IET Control Theory Appl. 1 (5) (2007), 1441–1450.
41. Silva, C.J., Cruz, C., Torres, D.F., Muñuzuri, A.P., Carballosa, R., Area, I., Nieto, J.J., Fonseca-Pinto, R., Passadouro, R., Santos, E.S.D., Abreu, W. Optimal control of the Covid-19 pandemic: controlled sanitary decon-finement in portugal, Scientific reports. 11 (1)(2021), 1–15.
42. Soleiman, MA and Ray, WH. On the optimal control of systems having pure time delays and singular arcsI, Some necessary conditions for optimality, Int. J. Control., 16 (5) (1972), 963–976.
43. Song, R., Xiao, W. and Wei, Q. Multi-objective optimal control for a class of nonlinear time-delay systems via adaptive dynamic programming, Soft Comput. 17 (11) (2013), 2109–2115.
44. Tang, G. and Luo, Z. Suboptimal control of linear systems with state time-delay, In IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028) , 5(1999), 104–109.
45. Tang, G.Y. and Zhao, Y.D. Optimal control of nonlinear time-delay systems with persistent disturbances, J. Optim. Theory Appl. 132 (2) (2007), 307–320.
46. Wright, K. Some relationships between implicit Runge-Kutta, collocation and Lanczosτ methods, and their stability properties, BIT Numer. Math. 10 (2)(1970), 217–227.
47. Zennaro, M. Natural continuous extensions of Runge-Kutta methods, Math. Comp. 46 (173) (1986), 119–133.
Send comment about this article