[1] Agarwal, R., Tiwari, M.K. and Mukherjee, S.K. Artificial immune system based approach for solving resource constraint project scheduling problem, Int. J. Adv. Manuf. Technol. 34(5-6) (2007), 584–593.
[2] Bouleimen, K. and Lecocq, H. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version, European J. Oper. Res. 149(2) (2003), 268–281.
[3] Browning, T.R. and Yassine, A.A. A random generator of resource constrained multi-project network problems, J. Sched. 13(2) (2010), 143–161.
[4] Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E. Resource-constrained project scheduling: Notation, classification, models, and methods, European J. Oper. Res. 112(1) (1999), 3–41.
[5] Brucker, P., Knust, S., Schoo, A. and Thiele, O. A branch and bound algorithm for the resource-constrained project scheduling problem, European J. Oper. Res. 107(2) (1998), 272–288.
[6] Cooper, D.F. Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation, Manag. Sci. 22(11) (1976), 1186–1194. doi:10.1287/mnsc.22.11.1186.
[7] Creemers, S. Minimizing the expected makespan of a project with stochastic activity durations under resource constraints, J. Sched. 18(3) (2015), 263–273.
[8] Davis, E.W. and Patterson, J.H. A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling, Manag. Sci. 21(8) (1975), 944–955.
[9] Goncharov, E.N. and Leonov, V.V. Genetic algorithm for the resource constrained project scheduling problem, (Russian); translated from Avtomat. i Telemekh. 2017, , no. 6, 173–189 Autom. Remote Control 78 (2017), no. 6, 1101–1114.
[10] Hartmann, S. A self-adapting genetic algorithm for project scheduling under resource constraints, Naval Res. Logist. 49(5) (2002), 433–448. doi:10.1002/nav.10029.
[11] Icmeli, O. and Rom, W.O. Solving the resource constrained project scheduling problem with optimization subroutine library, Comput. Oper. Res. 23(8) (1996), 801–817.
[12] Kanit, R., Ozkan, O. and Gunduz, M. Effects of project size and resource constraints on project duration through priority rule-base heuristics, Artif. Intell. Rev. 32(1-4) (2009), 115–123. doi:10.1007/s10462-009-9138-1.
[13] Klein, R. Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects, European J. Oper. Res. 127(3) (2000), 619–638.
[14] Klein, R. and Scholl, A. PROGRESS: Optimally solving the generalized resource-constrained project scheduling problem, Special issue on project scheduling. Math. Methods Oper. Res. 52(3) (2000), 467–488.
[15] Kolisch, R. Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation, European J. Oper. Res. 90(2) (1996), 320–333.
[16] Kolisch, R., Schwindt, C. and Sprecher, A. Benchmark instances for project scheduling problems, In: Węglarz J. (eds) Project Scheduling. In ternational Series in Operations Research & Management Science, vol 14.
Springer, Boston, MA. (1999).
[17] Kolisch, R., Sprecher, A. and Drexl, A. Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems, Manag. Sci. 41(10) (1995), 1693–1703.
[18] Kurtulus, I. Multi-project scheduling: Analysis of scheduling strategies under Unequal DealyPenalities, J. Oper. Manag. 5(3) (1985), 161–172.
[19] Kurtulus, I. and Davis, E.W. Multi-Project Scheduling: Categorization of Heuristic Rules Performance, Manag. Sci. 28(2) (1982), 161–172.
[20] Lenstra, J.K. and Rinnooy, K.A.H.G. Complexity of Scheduling under Precedence Constraints, Operations Res. 26(1) (1978), 22–35.
[21] Liang, Y., Cui, N., Wang, T. and Demeulemeester, E. Robust resource constrained max-NPV project scheduling with stochastic activity duration, OR Spectrum. 41(1) (2019), 219–254.
[22] Mortazavi Nejad, M., Tareghian, H.R. and Sari, Z. Payment scheduling under project crashing based on project progress, Iranian Journal of Numerical Analysis and Optimization, 7(2) (2017), 39–56.
[23] Petrović, R. Optimization of Resource Allocation in Project Planning, Operations Res. 16(3) (1968), 559–568.
[24] Raghavendra, B.V. Scheduling in parallel machines environment using genetic algorithm, J. Appl. Eng. Sci. 16(1) (2018), 36–42.
[25] Servranckx, T. and Vanhoucke, M. A tabu search procedure for the resource-constrained project scheduling problem with alternative sub graphs, European J. Oper. Res. 273(3) (2019), 841–860.
[26] Shukla, S.K., Son, Y.J. and Tiwari, M.K. Fuzzy-based adaptive sample sort simulated annealing for resource-constrained project scheduling, Int. J. Adv. Manuf. Technol. 36(9-10) (2008), 982–995.
[27] Sokolov, B., Tolpegin, O., Ipatov, Y. and Andrianov, Y. Polymodel description and qualitative analysis of problems for measurement computer operations planning in cyber-physical systems, J. Appl. Eng. Sci. 16(4)
(2018), 577–582.
[28] Ulusoy, G. and Özdamar, L. Heuristic Performance and Net work/Resource Characteristics in Resource-constrained Project Schedul ing, J. Oper. Res. Soc. 40(12) (1989), 1145–1152.
[29] Yoosefzadeh, H.R., Tareghian, H.R. and Farahi, M.H. Tri-directional Scheduling Scheme: Theory and Computation, J. Math. Model. Algorithms. 9(4) (2010), 357–373.
[30] Yoosefzadeh, H.R., Tareghian, H.R. and Farahi, M.H. Multidirectional scheduling scheme in resource-constrained project scheduling problem, Naval Res. Logist. 61(1) (2013), 44–55.
[31] Zamani, M. A high-performance exact method for the resource constrained project scheduling problem, Comput. Oper. Res. 28(14)(2001), 1387–1401.
[32] Zhu, X., Ruiz, R., Li, S., and Li, X. An effective heuristic for project scheduling with resource availability cost, European J. Oper. Res. 257(3) (2017), 746–762.
Send comment about this article