1. Abel, H. Pseudodifferential and singular integral operators: an introduc tion with applications, De Gruyter, 2011.
2. Arora, S., Singh Brar, Y., and Kumar S. Haar Wavelet Matrices for the Numerical Solutions of Differential Equations, Int. J. Comput. Appl. (0975–8887) 97 (2014), no. 18, 33–36.
3. Arora, S., Singh, I., and Singh Brar, Y. Comparative study of Haar wavelet with numerical methods for partial differential equations, International Journal of Pure and Applied Mathematics, 101 (2015), no. 4, 489–503.
4. Boggiiatto, P. and Rodino, L. Quantization and pseudo-differential operators, Cubo. Math. Educ. 5 (2003), no. 1, 237–272.
5. Cerejeiras, P. and Vieira, N. Regularization of the non-stationary Schrodinger operator, Math. Methods Appl. Sci. 32 (2009), no. 5, 535–555
6. Chen, C. F. and Hsiao, C. H. Wavelet approach to optimising dynamic systems, IEE Proc. Control Theory Appl. 146 (1999), no. 2, 213–219.
7. Chen, C. F. and Hsiao, C. H. Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl. 144(1997), no. 1, 87–94.
8. Haq, F. I. Hussain, I., and Ali, A. A haar wavelets based numerical method for third-order-boundary and initial value problems, World Appl. Sci. J. 13(2011), no. 10, 2244–2251.
9. Lazaar, S., Ponenti, P., Liandrat, J., and Tchamitchian, P. Wavelet algorithms for numerical resolution of partial differential equations, Comput. Methods Appl. Mech. Engrg. 116 (1994), no. 1-4, 309–314.
10. Lepik, U. ¨ Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl. 61 (2011), no. 7, 873–1879.
11. Lepik, U. ¨ Solving integral and differential equations by the aid of nonuni form Haar wavelets, Aapl. Math. Comput. 198 (2008), no. 1, 326–332.
12. Lepik, U. ¨ Haar wavelet method for solving higher order differential equations , Int. J. Math. Comput. 1 (2008), no. 8, 84–94.
13. Lepik, U. ¨ Numerical solutions of evolution equations by the Haar wavelet method, Appl. Math. Comput. 185 (2007), no. 1, 695–704.
14. Lepik, U. ¨ Numerical solutions of differential equations using Haar wavelets, Math. Comput. Simulatio 68 (2005), no. 2, 127–143.
15. Luo, G. Y., Osypow, D., and Irle, M. Vibration modeling with fast Gaussian wavelet algorithm, Adv. Eng. Software 33 (2002), no. 4, 191–197.
16. Pandit, S. and Kumar, M. Haar Wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems, Appl. Math. Inf. Sci. 8(2014), no. 6, 2965–2974.
17. Singh, I., Arora. S., and Kumar, S. Numerical solution of wave equation using Haar wavelet, Int. J. Pure Appl. Math. 98 (2015), no. 4, 457–469.
18. Tangborn, A. and Zhang, S. Q. Wavelet transform adapted to an approximate Kalman filter system, Appl. Numer. Math. 33 (2000), no. 1-4, 307–316.
19. Vasilyev, O. V. Paolucci, S., and Sen, M. A multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. Comput. Phys. 120 (1995), no. 1, 33–47.
20. Walden, J. Filter bank methods for hyperbolic PDEs, SIAM J. Numer. Anal. 36 (1999), no. 4, 1183–1233.
Send comment about this article