[1] Ansari, A.R., Bakr, S.A. and Shishkin, G.I. A parameter-robust finite difference method for singularly perturbed delay parabolic partial differ-ential equations, J. Comput. Appl. Math. 205(1) (2007), 552–566.
[2] Clavero, C., Jorge, J.C., Lisbona, F. and Shishkin, G.I.An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems, IMA J. Numer. Anal. 20(2) (2000), 263–280.
[3] Das, A., Govindarao, L. and Mohapatra, J. A second order weighted monotone numerical scheme for time-delayed parabolic initial-boundary-value problem involving a small parameter, Int. J. Math. Model. Numer. Optim. 12(3) (2022), 233–251.
[4] Durán, R.G. and Lombardi, A.L. Finite element approximation of con-vection diffusion problems using graded meshes, Appl. Numer. Math. 56(10-11) (2006), 1314–1325.
[5] Elboughdiri, N., Ghernaout, D., Muhammad, T., Alshehri, A., Sadat, R., Ali, M.R. and Wakif, A. Towards a novel EMHD dissipative stagna-tion point flow model for radiating copper-based ethylene glycol nanoflu-ids: An unsteady two-dimensional homogeneous second-grade flow case study, Case Stud. Therm. Eng. 45 (2023), 102914.
[6] Elboughdiri, N., Reddy, C.S., Alshehri, A., Eldin, S.M., Muhammad, T. and Wakif, A. A passive control approach for simulating thermally en-hanced Jeffery nanofluid flows nearby a sucked impermeable surface sub-jected to buoyancy and Lorentz forces, Case Stud. Therm. Eng. (2023), 103106.
[7] Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. Robust computational techniques for boundary layers, Applied Math-ematics (Boca Raton), 16. Chapman & Hall/CRC, Boca Raton, FL, 2000.
[8] Gartland, E.C. Jr., Graded-mesh difference schemes for singularly per-turbed two-point boundary value problems, Math. Comp. 51(184) (1988), 631–657.
[9] Gowrisankar, S. and Natesan, S. A robust numerical scheme for singu-larly perturbed delay parabolic initial-boundary-value problems on equidis-tributed grids, Electron. Trans. Numer. Anal. 41 (2014), 376–395.
[10] Gowrisankar, S. and Natesan, S. ε-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equa-tions, Int. J. Comput. Math. 94(5) (2017), 902–921.
[11] Gupta, V., Kadalbajoo, M.K. and Dubey, R.K. A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput. Math. 96(3) (2019), 474–499.
[12] Jha, A. and Kadalbajoo, M.K. A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems, Int. J. Com-put. Math. 92(6) (2015), 1204–1221.
[13] Kabeto, M.J. and Duressa, G.F. Robust numerical method for singularly perturbed semilinear parabolic differential difference equations, Math. Comput. Simulation 188 (2021), 537–547.
[14] Kuang, Y. Delay differential equations with applications in popula-tion dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.
[15] Kumar, D. and Kumari, P. A parameter-uniform scheme for singularly perturbed partial differential equations with a time lag, Numer. Methods Partial Differ. Equ. 36(4) (2020), 868–886.
[16] Kumar, K., Podila, P.C., Das, P. and Ramos, H. A graded mesh refine-ment approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems, Math. Methods Appl. Sci. 44(16) (2021), 12332–12350.
[17] Kumar, S., Sumit, Vigo-Aguiar, J. A parameter-uniform grid equidistri-bution method for singularly perturbed degenerate parabolic convection-diffusion problems, J. Comput. Appl. Math. 404 (2022), Paper No. 113273, 15.
[18] Ladyženskaja, O.A., Solonnikov, V.A. and Uralceva, N.N. Linear and quasi-linear equations of parabolic type, volume 23 of Translations of Mathematical Monographs. American Mathematical Society, 1968.
[19] Miller, J.J., O’riordan, E. and Shishkin, G.I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, 1996.
[20] Mukherjee, K. and Natesan, S. Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems, Computing 92(1) (2011), 1–32.
[21] Natesan, S. and Gowrisankar, S. Robust numerical scheme for singularly perturbed parabolic initial-boundary-value problems on equidistributed Mesh, CMES - Comput. Model. Eng. Sci. 88(4), (2012), 245–268.
[22] Nelson, P.W. and Perelson, A.S. Mathematical analysis of delay differ-ential equation models of HIV-1 infection, Math. Biosci. 179(1) (2002), 73–94.
[23] Radojev, G. and Brdar, M. A collocation method on a Gartland-type mesh for a singularly perturbed reaction-diffusion problem, Math. Com-mun. 24(1) (2019), 19–37.
[24] Rajeev Ranjan, K. and Gowrisankar, S. Uniformly convergent NIPG method for singularly perturbed convection diffusion problem on Shishkin type meshes, Appl. Numer. Math. 179 (2022), 125–148.
[25] Rajeev Ranjan, K. and Gowrisankar, S. NIPG method on Shishkin mesh for singularly perturbed convection-diffusion problem with discontinuous source term, Int. J. Comput. Methods 20(2) (2023), Paper No. 2250048, 29 pp.
[26] Rasool, G., Wakif, A., Wang, X., Shafiq, A. and Chamkha, A.J., Numer-ical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface, Alex. Eng. J. 68 (2023), 747–762.
[27] Sharma, J., Ahammad, N.A., Wakif, A., Shah, N.A., Chung, J.D. and Weera, W. Solutal effects on thermal sensitivity of casson nanofluids with comparative investigations on Newtonian (water) and non-Newtonian (blood) base liquids, Alex. Eng. J. 71 (2023), 387–400.
[28] Shishkin, G.I. Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems, Math. Model. Anal. 10(4) (2005), 393–412.
[29] Villasana, M. and Radunskaya, A. A delay differential equation model for tumor growth, J. Math. Biol. 47(3) (2003), 270–294.
[30] Wakif, A. Numerical inspection of two-dimensional MHD mixed biocon-vective flows of radiating Maxwell nanofluids nearby a convectively heated vertical surface, Waves Random Complex Media, (2023), 1–22.
[31] Wakif, A., Abderrahmane, A., Guedri, K., Bouallegue, B., Kaewthon-grach, R., Kaewmesri, P. and Jirawattanapanit, A., Importance of ex-ponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and con-trolled locally by zero mass flux and convective heating conditions: a
differential quadrature analysis, Front. Phys. 10 (2022), 988275.
[32] Wu, J. Theory and applications of partial functional-differential equa-tions, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996.
[33] Zhang, K., Shah, N.A., Alshehri, M., Alkarni, S., Wakif, A. and Eldin, S.M. Water thermal enhancement in a porous medium via a suspension of hybrid nanoparticles: MHD mixed convective Falkner’s-Skan flow case study, Case Stud. Therm. Eng. 47 (2023), 103062.
Send comment about this article