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Abstract

The inverse problems in various fields of applied sciences and industrial
design are concerned with the estimation of parameters that cannot be
directly measured. In this work, we present a novel numerical approach
for addressing the fractional inverse source problem by a machine learn-
ing algorithm and considering the ideas behind the spectral methods. The
introduced algorithm utilizes a space-time Galerkin type of least-squares
support vector regression to approximate the unknown source in a finite-
dimensional space, providing a stable and efficient solution. With the pro-
posed machine learning method, we overcome the limitations of classical
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numerical methods and offer a promising alternative for tackling inverse
source problems while avoiding overfitting by carefully selecting regular-
ization parameters. To validate the effectiveness of our approach and il-
lustrate an exponential convergence, we present some test problems along
with the corresponding numerical results. The proposed method’s superior
accuracy compared to the existing methods is also illustrated.

AMS subject classifications (2020): Primary 35R11; Secondary 65M70, 65M22.

Keywords: Machine learning; Support vector machines; Inverse Source
problem; Time fractional wave equation; Space-time Galerkin.

1 Introduction

Inverse problems are a significant area of research in various fields, including
physics, engineering, geophysics, medical imaging, and many others. The
fundamental nature of an inverse problem lies in determining the cause or
source of an observed effect or measurement.

In the process of designing industrial system components, there are often
instances where the desired future state of the system is known as a set of
observations, and the aim is to calculate the underlying causes that result
from those observations. As an illustration, consider certain diffusion pro-
cesses where the final temperature, together with the initial and boundary
conditions, is known. However, the value of the diffusion coefficient is yet to
be determined. Likewise, in other scenarios, information regarding the vibra-
tions of a rod or the voltage at a specific future time is provided, necessitating
the determination of the associated source term. These two situations can be
classified as the coefficient inverse problem and the inverse source problem,
respectively.

Within the medical domain, the coefficient inverse problem plays a no-
table role in drug delivery applications. In this context, the proper selection
of ingredients is vital to achieve a targeted final density of medicine within a
predetermined time frame within the blood vessels. Inverse source problems
appear in diverse domains, including crack analysis in nondestructive material
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1039 A space-time least-squares support vector regression scheme for inverse ...

evaluation [32], solving inverse heat equations to determine boundary condi-
tions on inaccessible surfaces of a scramjet combustor [6], cell detection [7],
models of light propagation in optical tomography across various scales [2],
as well as determining absorption and diffusion coefficients in photo-acoustic
imaging [27]. Additional instances include the retrieval of the adsorption-
desorption source density rate, the exploration of elasticity problems [36],
and the investigation of functionally graded materials [11].

Two important types of inverse source problems concern the wave and
diffusion equations. In this work, we focus on the inverse damped wave prob-
lems and present a novel numerical simulation method based on Galerkin-
type least-squares support vector regression (LS-SVR), which is a supervised
machine learning algorithm.

The numerical solution of inverse problems that involve time-fractional
wave equations has attracted considerable attention due to its wide range
of applications in various scientific and engineering domains [3, 16, 25, 28].
Table 1 provides a short literature review of the recent works, focusing on the
applications, methods, and key references in the field of inverse problems.

In recent years, support vector machines (SVM), support vector regression
(SVR), and LS-SVR have emerged as powerful and versatile tools for solving
differential and integral equations [18, 22, 23, 35], among others. These
machine learning methods offer advantages such as high accuracy, robustness,
and the ability to handle large datasets.

In this research article, our primary objective is to present a space-time
Galerkin method that implements LS-SVR as a numerical solution for the
inverse time-fractional wave equations. In the proposed algorithms, we aim
to improve the efficiency and effectiveness of solving inverse problems in the
context of time-fractional wave models. Through extensive numerical exper-
iments and comparative analyses, we will demonstrate the superior perfor-
mance of these methods in terms of accuracy, stability, and computational
efficiency.

The time-fractional wave equations concerning the inverse source prob-
lems arise in reconstructing the source functions. They have found many
other applications in engineering [3, 13, 25, 28, 17]. Here we focus on such
equations. We denote the space domain by Λ ⊂ Rd, which is assumed to be
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Table 1: A literature review for the numerical methods for inverse problems. Let ICs
and BCs stand for initial and boundary conditions.

inverse type ref method applications

all types [37] review work vehicle–bridge interaction dynamics
n-pixel image [20] machine learning image reconstruction

source [1] deep learning seismic inverse problem
ICs, BCs [4] adjoint method heat transfer problem
source [16] finite element method wave source reconstruction
source [19] real-time reconstruction locations, and magnitudes of wave sources

a bounded Lipschitz domain, the time domain by I = [0, T ], the space-time
domain by Ω = Λ × I, and the boundary of the space domain by ∂Λ = Γ.
We consider the following inverse wave equation with damping:

tial2tu+ g̃(∂αt u)−∇ · (a∇u) + cu+K ∗ u = f + s̃, for all (x, t) ∈Ω, (1)

with the unknown source f . Here the operator ∗ denotes the convolution
integral given by

(k ∗ u)(t) =
∫ t

0

K(t− s)u(s)ds.

In this problem, u, a, c, and s̃ are spatiotemporal functions, K = K(t), and
f = f(x). The damping term g̃ may be a nonlinear monotonic function, and
the kernel K is assumed as a smooth function [12]. The linear and nonlinear
cases of g̃(x) = x or x2 are discussed exclusively for the integer order α = 1

in [29].

The problem (1) is equipped with the boundary and initial conditions

u(x, 0) = h0(x), for x ∈ Λ, (2)

ut(x, 0) = h1(x), for x ∈ Λ, (3)

u|Γ = 0, for t ∈ I. (4)

In this paper, the final observation is assumed as

u(x, T ) = ψ̃T (x). (5)
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The goal is to recover an unknown spatially distributed source f = f(x) ∈
L2(Λ), as well as the velocity u ∈ H1(Ω).

Wave propagation in some complex media has special non-local and
memory-dependent properties that are better captured in modeling with frac-
tional derivatives. This approach allows for the incorporation of memory ef-
fects into wave equations, which leads to more accurate models [17]. For the
inverse source problem (1)–(5), the uniqueness of the solution is discussed in
[29].

Stability issues and challenges in inverse problems arise due to their ill-
posed nature, sensitivity to noise, computational complexity, and uncer-
tainties in the models. However, by employing regularization techniques,
Bayesian inference, data filtering and preprocessing, careful model selection
and validation, and proper regularization parameter selection, it is possible
to mitigate these issues and obtain stable and reliable solutions to inverse
problems. The proposed machine learning method in this work utilizes a
Tikhonov regularization to overcome the stability issues. These aspects are
discussed in the numerical results.

This paper introduces a space-time Galerkin LS-SVR approach with the
orthogonal polynomial kernel that offers a unified framework for discretiza-
tion, implementation, and regularization. It also demonstrates rapid conver-
gence in both the spatial and temporal dimensions for solving the inverse
time-fractional wave equation (1)–(4). The proposed method effectively ad-
dresses stability issues and achieves exponential convergence. During the
training process, the solution is sought within a finite-dimensional space us-
ing simple orthogonal polynomial functions. Polynomial kernels in LS-SVR
offer advantages in inverse source problems due to their ability to capture
nonlinear relationships, computational efficiency, simplicity, interpretability,
robustness to noise, and flexibility in model customization.

The main contribution of this work is to propose a space-time LS-SVR
method, utilizing an orthogonal polynomial kernel for solving the inverse
source problem of the time-fractional wave equation.

The paper is structured as follows. In Section 2, a concise overview of
fractional derivatives, SVM for classification and regression, as well as ap-
proximation by orthogonal kernels is presented. Section 3 focuses on intro-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1037–1068



Mohammadi and Tari Marzabad 1042

ducing our LS-SVR numerical method for simulating damped wave equations
with memory. In Section 4, some test problems are provided to demonstrate
the efficacy of the method. Finally, the paper concludes with some closing
remarks.

2 Preliminaries

In this section, we present some preliminaries required in the next sections.
The following subsections include the basic definitions of fractional calcu-
lus, function approximation with orthogonal polynomials, weighted residual
methods, and SVM for classification and regression.

2.1 Modeling with fractional derivatives

Fractional derivatives provide a flexible tool for modeling certain phenomena
in science and engineering offering greater compatibility with the experimen-
tal results compared to classical derivatives. It is now well established that
the fractional diffusion and wave equations exhibit more realistic results and
support various applications ranging from population dynamics to mathemat-
ical finance (e.g., as Black–Scholes equations). Due to the lack of analytical
methods for fractional partial differential equations, developing numerical
techniques is an ongoing research field.

Let n−1 ≤ α < n, n ∈ N. The Caputo and Riemann–Liouville definitions
for fractional derivative of order α > 0, denoted by c

aD
(α)
t f and RL

a D
(α)
t f , are,

respectively, given by [8, 24]

c
aD

(α)
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, (6)

RL
a D

(α)
t f(t) =

1

Γ(n− α)

∂

∂t

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (7)

where n− 1 ≤ α < n and n ∈ N.

The right Riemann–Liouville derivative of order α is given by
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RL
t D

(α)
T f(t) =

(−1)n

Γ(n− α)

∂

∂t

∫ T

t

f(τ)

(τ − t)α−n+1
dτ. (8)

2.2 LS-SVR and orthogonal kernels

Machine learning techniques, such as SVM and SVR, have gained widespread
recognition within the research community and industry for their ability to
classify data and predict patterns in large datasets. SVM addresses classi-
fication tasks, while SVR focuses on regression problems. Both algorithms
formulate an optimization problem with inequality constraints to achieve
their objectives. Similarly, the least squares variants, LS-SVM, and LS-SVR,
convert these inequalities into equalities, simplifying the quadratic program-
ming into a system of linear equations. This transformation allows for ef-
ficient training and easier solution computation. For more details, see, for
example, [5, 9].

For a known data set (xi, yi), i = 1, . . . , N , where the real numbers yi’s
are the target value for the independent data xi ∈ Rnd , LS-SVR finds the
wights wi’s and the bias b ∈ R in y(x) = wTϕ(x) + b with known functions
ϕi, by solving the following optimization problem:

min 1

2
wTw +

γ

2
eT e (9)

s.t. yi = wTϕ(xi) + b+ ei, i = 1, . . . , N.

Here γ ∈ R+ denotes the tuning parameter , w = [w1, . . . , wM ]T , ϕ =

[ϕ1, . . . , ϕM ]T . The hyperparameter γ controls the trade-off between the
model complexity and the accuracy of the regression. It is used to penalize
the deviation of the predictions from the actual target values. A smaller value
of γ allows for more complex models that are able to capture fine details and
noise in the data but may suffer from overfitting. In our work, in which an
inverse fractional partial differential equation is considered without noise, we
follow the same values as the recent publications [18, 22].

Utilizing the Lagrangian, which combines the objective function and a lin-
ear combination of the constraints using the dual variables αi, this quadratic
programming problem is transformed into a dual problem given by an equiva-
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lent linear system. The following theorem establishes the equivalence between
the primal problem, represented as a quadratic programming formulation (9),
and a linear system [18, 21, 33, 34].

Theorem 1. An equivalent form of the quadratic programming (9) is given
by [

W + 1
γ IN 1N

1T
N 0

][
α

b

]
=

[
y

0

]
, (10)

in which W is a positive definite matrix with the entries Wi,j = ϕT (xi)ϕ(xj),
IN is the identity matrix, 1T

N = [1, . . . , 1] ∈ RN , y = [y1, . . . , yN ]T , and
the dual variables α = [α1, . . . , αN ]T . Then with the kernel K(x, xj) =

ϕT (x)ϕ(xj), we have

y(x) =

N∑
j=1

αjK(x, xj) + b. (11)

The kernel function computes similarities between pairs of data points in
the input space. The purpose of the kernel in SVM is to transform the data
into a higher-dimensional feature space, where it becomes easier to separate
or make accurate predictions. The Mercer theorem states that a symmet-
ric positive definite kernel function is necessary and sufficient for SVM to
guarantee the existence of a corresponding feature space mapping [15].

To use orthogonal polynomials as kernels in SVR, we can define the kernel
function as follows: K(x, x′) = ϕT (x) · ϕ(x′), where ϕ(x) is the feature map
that transforms the input space into the space of orthogonal polynomials. We
denote the set of polynomials with a degree less than or equal to M on the
unit interval [0, 1] by PM . A basis for this set is given by Jacobi polynomials
P

(α,β)
n (x) with α, β > −1, which are orthogonal on [−1, 1], [10, 31]∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)χ(α,β)(x)dx = 0, n ̸= m, (12)

with χ(α,β)(x) = (1− x)α(1 + x)β . These functions result in fewer computa-
tions due to the sparsity of the involved matrices in the variational formula-
tion of the method. The endpoint values are also given by
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P (α,β)
n (−1) = (−1)n

(
n+ β

n

)
, P (α,β)

n (1) =

(
n+ α

n

)
, (13)

which are used in handling boundary conditions for an efficient formulation
of the proposed method [30].

A special case when α = 0, β = 0, the Legendre polynomials are easily
obtained by the recurrence formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 1, (14)

starting with P0(x) = 1, P1(x) = x. By (13), they have the boundary values
Pn(−1) = (−1)n, Pn(1) = 1.

We use the shifted Legendre polynomials that are orthogonal on the de-
sired domain [0, T ] as

Ln(t) = Pn(
2t

T
− 1), n = 0, 1, 2, . . . , (15)

with ∫
I

Lm(t)Ln(t)dt =
T

2n+ 1
δm,n. (16)

3 LS-SVR for the inverse time-fractional wave equation

In this section, we first recall the Sobolev spaces and the specific spaces
required in our formulation and the associated norms [14, 26, 31]. Then, we
present the variational formulation and a space-time Galerkin LS-SVR for
(1)–(5).

3.1 Functional spaces

The Lebesgue spaces Lp, p ≥ 1 on the domain Λ, denoted as Lp(Λ), refers
to the space of measurable functions u with pth power Lebesgue integrable
on Λ, with the inner product. For p = 2, it is a Hilbert space with the
inner product (u, v) =

∫
Λ
uvdΛ endowed with the norm ∥u∥2 = (u, u)1/2. On

the other hand, the Sobolev spaces W k,p(Λ) consist of functions with weak
derivatives up to order k that are also in Lp(Λ). It can be mathematically
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expressed as

W k,p(Λ) = {u : Dsu ∈ Lp(Λ), |s| ≤ k},

where Dsu represents the weak derivative of u with respect to the multi-index
s. The associated Sobolev norm ∥u∥k,p is given by ∥u∥k,p = (

∑k
i=0 ∥u(i)∥pp)1/p.

For the special case, where p = 2, W k,2(Λ) is a Hilbert space, denoted by
Hk(Λ). These functional spaces are defined on the spatial domain Λ. Also,
these spaces on the temporal domain I are defined similarly. For a functional
space X, the x− t spaces for s > 0, are defined as

Hs(I;X) = {v : ∥v(·, t)∥X ∈ Hs(I)},

Hs
0(I;X) = {v : ∥v(·, t)∥X ∈ Hs

0(I)},

with the subscript zero as the Sobolev space with compact support.

Also, we define the Banach space Bs(Ω) = Hs(I;L2(Λ)) ∩ L2(I;H1
0 (Λ))

equipped with the norm

∥v∥Bs(Ω) = ∥v∥Hs(I;L2(Λ)) + ∥v∥L2(I;H1
0 (Λ)).

Also, C∞
0 (I) refers to the smooth functions on I with compact support with

the closure in terms of ∥ · ∥2, H2
0 (I).

Note that we first use a change of variable for the damped wave equation
(1)–(5) as

v(x, t) = u(x, t) + h0(x) + th1(x),

to make the initial conditions homogeneous. So we have

∂2t u+ g(∂αt u)−∇ · (a∇u) + βu+K ∗ u = f + s, for all (x, t) ∈Ω, (17)

with the initial conditions

u(x, 0) = 0, ut(x, 0) = 0, for all x ∈ Λ, (18)

the BCs

u|Γ = 0, for all t ∈ I, (19)

and the final condition
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u(x, T ) = ψT (x) := ψ̃T (x)− h0(x)− th1(x). (20)

Now, we introduce the variational formulation of the problem (17)–(20),
an easy-to-compute associated bilinear form as well as a space-time Galerkin
LS-SVR for the numerical simulation of the problem.

3.2 LS-SVR with variational formulation of the inverse
time-fractional wave equation

Here, we first present the LS-SVR for Lu = f with a linear differential
operator L and with some appropriate homogeneous boundary conditions.
The approximate solution in dual variables by using a kernel function is
assumed as

u(x) =

M∑
j=0

αjK(x, xj), (21)

with a kernel K(·, ·) in which the weights are given by the following problem:

min 1

2
wTw +

γ

2
eT e (22)

s.t. (wTLϕ(x), ψi)− (f(x), ψi) = ei, i = 0, . . . ,M,

with the assumption that ϕi’s satisfy the homogeneous boundary conditions
so do u (21).

The quadratic programming (22) may be written as an equivalent linear
system. This is given by the following theorem.

Theorem 2. The dual variables αi’s in (21) are given by

(W +
1

γ
IM )α = b, (23)

with

bi = (f, ψi), i = 0, . . . ,M,

Wk,i =

M∑
j=0

(Lϕj , ψk)(Lϕj , ψi), k, i = 0, . . . ,M. (24)
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Proof. We consider the Lagrangian as

L =
1

2
wTw +

γ

2
eT e−

M∑
i=0

αi((w
TLϕ, ψi)− (f, ψi)− ei).

Then, we have the following optimality conditions:

∂L

∂wk
= 0 → wk =

M∑
i=0

αi(Lϕk, ψi), (25)

∂L

∂ek
= 0 → γek + αk = 0, (26)

∂L

∂αk
= 0 → (wTLϕ, ψk)− (f, ψk)− ek = 0, (27)

for k = 0, . . . ,M . So, substituting ek from (26) into (27), we have

M∑
j=0

wj(Lϕj , ψk) +
1

γ
αk = (f, ψk).

Now, by (25), we get

M∑
j=0

M∑
i=0

αi(Lϕj , ψi)(Lϕj , ψk) +
1

γ
αk = (f, ψk).

Using the Kronecker delta, this can be written as

M∑
i=0

αi(

M∑
j=0

(Lϕj , ψk)(Lϕj , ψi) +
1

γ
αkδki) = (f, ψk),

which is the desired result.

Note that the system (23) has a simpler form than (10) for known datasets
since the constant function is involved in the basis functions.

Now, we present an algorithm for the numerical simulation of the frac-
tional inverse source problem in the LS-SVR using orthogonal Legendre poly-
nomials as the kernel. For the approximation in space [0, π], and time interval
[0, T ], we use combinations of ϕm(x) = Pm( 2πx−1) and ψn(t) = Pn(2t/T−1),
respectively, which satisfy the boundary conditions.

We consider the weak formulation of (17)–(20), on the space-time domain
Ω = Λ× I:

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1037–1068
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(∂2t u, v)Ω + (g(∂αt u), v)Ω − (∇ · (a∇u), v)Ω + c(u, v)Ω + (K ∗ u, v)Ω

= (f, v)Ω + (s, v)Ω, (28)

for all v ∈ Bα/2(Ω). For f ∈ L2(Ω), the problem is to find u ∈ Bα/2(Ω) such
that

A(u, v) = F(v), for all v ∈ Bα/2(Ω), (29)

in which the bilinear form A is a manipulation of (28) and the the functional
F are given by

A(u, v) = −(∂tu, ∂tv)Ω + (g(∂α
t u), v)Ω + ((a∇u),∇v)Ω + c(u, v)Ω + (K ∗ u, v)Ω,

F(v) = (f, v)Ω + (s, v)Ω. (30)

We later consider a flexible margin with a tolerance for errors in the LS-
SVR for the constraints (29). The bilinear map in the weak form characterizes
the interactions between the unknown function and the derivatives using
suitable test functions. The variational formulation, based on the bilinear
form, leads to an algebraic system of equations enabling us to solve using
numerical methods. On the other hand, the Lax–Milgram lemma ensures the
existence and uniqueness of the solution as well as the continuous dependence
of the solution on the given data when A in (30) is a continuous, bounded,
and weakly coercive function, that is,

sup∥v∥=1|A(u, v)| ≥ c∥u∥ for all u,

sup∥u∥=1|A(u, v)| > 0, for all v ̸= 0.

Note that the term (g̃(∂αt u), v)Ω may be written in terms of the derivative of
order α/2 by using integration by parts, the definitions of the left and right
Riemann–Liouville derivatives and some algebraic manipulations. We do this
by following the work of [14, Lemmas 2.1 and 2.6].

Lemma 1. Let s ∈ (0, 1), u(t) ∈ Hs(I), v(t) ∈ C∞
0 (I). Then, the inner

product of a fractional derivative with a function changes the order as

(RL∂αt u, v)I = (u,T ∂
α
t v)I . (31)

Proof. By (7) and integration by parts, we have
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(RL∂αt u, v)I =

∫ T

0

vRL∂αt udt

=
1

Γ(1− α)

∫ T

0

d

dt

∫ t

0

u(x, τ)

(t− τ)α
dτ v(x, t)dt

=
v(x, t)

Γ(1− α)

∫ t

0

u(x, τ)

(t− τ)α
dτ |T0 − 1

Γ(1− α)

∫ T

0

∫ t

0

u(x, τ)

(t− τ)α
dτ∂tvdt

= − 1

Γ(1− α)

∫ T

0

∫ t

0

u(x, τ)

(t− τ)α
dτ∂tvdt

= − 1

Γ(1− α)

∫ T

0

∫ T

τ

∂tv

(t− τ)α
dt u(x, τ)dτ

= − 1

Γ(1− α)

∫ T

0

(
d

dτ

∫ T

τ

v

(t− τ)α
dt)u(x, τ)dτ

= (u,T ∂
α
t v)I .

We use (31) to get the following result.

Lemma 2. Let 0 < α < 1, u ∈ 0H
1(I), v ∈ 0H

α/2(I). Then,

(∂αt u, v)I = (∂
α/2
t u,t ∂

α/2
T v)I . (32)

Proof. First, we consider a sequence vn ∈ C∞
0 (I) such that

∥vn − v∥Hα/2(I) → 0, n→ ∞.

By (31), we have

(∂αt u, vn)I = (∂
α/2
t ∂

α/2
t u, vn)I

= (∂
α/2
t u,t ∂

α/2
T vn)I .

By using the Schwarz inequality, we get

|(∂αt u, vn)I − (∂αt u, v)I | ≤ ∥∂αt u∥∥v − vn∥.

This tends to zero as n→ ∞, which leads to (32).
Now, for a constant a ∈ R, we have the standard weak formulation for

the problem (17)–(20) as follows. Find u ∈ Bα/2(Ω) with

−(∂tu, ∂tv)Ω + ζ(∂
α/2
t u,t ∂

α/2
T v)Ω + a(∂xu, ∂xv)Ω + c(u, v)Ω + (K ∗ u, v)Ω
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= (f, v)Ω + (s, v)Ω, (33)

for all v in the infinite-dimensional space Bα/2(Ω). To be practical, we present
an LS-SVR formulation by orthogonally projecting this form into trial and
test spaces with finite dimensions. To discretize the problem (17)–(20) in the
space-time domain, the approximate solution in space is sought in P 0

M (Λ),

and the space of polynomials on Λ with degree at most M having compact
support on Λ. The approximate space in time includes the functions v ∈ PN

with v(t = 0) = 0. The space-time trial space is written as

SM,N = P 0
M (Λ)⊗ PE

N (I). (34)

For simplicity, let SL = SM,N be the finite-dimensional space in both direc-
tions.

The LS-SVR for the problem (17)–(20) is as follows. By letting a tolerance
in the bilinear form, we seek uL ∈ SL by considering

min 1

2
wTw +

γ

2
eT e (35)

s.t. A(uL, vL)−F(vL) = ei, i = 0, · · · ,M, for all vL ∈ SL,

in which

uL(x, t) =

M∑
m=0

N∑
n=0

um,nϕm(x)ψn(t), (36)

fL(x) =

M∑
m=0

fmϕm(x), (37)

with the trial functions. To facilitate the computations in inner products
and make use of the orthogonality in (35), the test functions are chosen as
vL = ϕi(x)ψj(t) ∈ SL. So, we have a sparse system of linear equations as
constraints in (35), and we call the optimization problem (35) with uL ∈ SL

as (36), fL ∈ P 0
M (Λ) as (37), the space-time Galerkin LS-SVR for the inverse

problem (17)–(20). The constraints in (35) are written as follows:

−(∂tuL, ∂tvL)Ω + ζ(∂
α/2
t uL,t ∂

α/2
T vL)Ω + a(∂xuL, ∂xvL)Ω + c(uL, vL)Ω

+(K ∗ uL, vL)Ω = (fL, vL)Ω + (s, vL)Ω + e. (38)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1037–1068



Mohammadi and Tari Marzabad 1052

Note that there are alternatives such as collocating at some points and/or
using other test functions. However, from a computational point of view,
Galerkin LS-SVR (35) is preferred. We present analytical relations for com-
puting the inner products in (38). The relation (38) is written in the form

−P 0,0UQ1,1 + ζP 0,0UQα/2,α/2 + P 0,0UQα/2,α/2 + aP 1,1UQ0,0

+ cP 0,0UQ0,0 + P 0,0UQ0,0
c = F.

In this relation, the matrices P,Q,U , and F are given by

P r,s = (∂rxϕ, ∂
s
xϕ)Λ,

Qr,s = (∂rxψ, ∂
s
xψ)I ,

Q0,0
c = (∂rxψ,K ∗ ∂sxψ)I ,

U = [um,n : 0 ≤ m,n ≤M ],

F = (fL + s̃, ϕi(x)ψj(t))Ω.

We treat the inner products in the first term analytically and the second
term numerically for the sake of efficiency. The analytical part provides the
use of orthogonality, which leads to sparse matrices for an efficient compu-
tational cost.

4 Numerical experiments

In this section, we consider some linear and nonlinear test problems to illus-
trate the convergence of the proposed space-time Galerkin LS-SVR algorithm
for the inverse source problems. The purpose is to check the convergence be-
havior of the numerical solutions for increasing degrees of polynomialsM and
N and some fractional derivatives α. We plot the errors with three measures
L∞, L2, and H1-errors in semi-log scale to illustrate the exponential con-
vergence. The figures include the convergence behavior in both spatial and
temporal dimensions with a fixed M and N , respectively. The exponential
convergence is confirmed since the logarithm of errors behaves as linear func-
tions versus the polynomial degree. The L∞, L2, and H1-errors are computed
by
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L∞(uL) ≈ max
0≤i,j≤M

|U(xi, tj)− uL(xi, tj)|, (39)

L2(uL) ≈ (
1

M2

M∑
i,j=1

|U(xi, tj)− uL(xi, tj)|2)1/2, (40)

H1(uL) ≈ (L2(uL) + L2(∂xuL))
1
2 , (41)

with xi = i
M , i = 0, . . . ,M. The errors are computed on a grid of 101× 101

equidistant points on the x−t domain for all numerical examples. That is, we
set the number of test points, M = 100. For the errors of the source function
f , we use similar measures but on space only. We use the experimental order
of convergence (EOC) in time as

EOCi =
ln(ei+1/ei)

ln(Ni/Ni+1)
,

in which ei is the error with Ni as the number of training points, ∆t =

1/Ni, i = 1, 2, . . . and a fixed number of spatial basis functions M . The
EOC in space is computed in a similar manner.

Example 1. As the first example, we consider the linear case, g(u) = u,
with the following data:

h0 = 0, h1 = sin(x), u|Γ = 0, a = 1, c = 2, K = −1,

ψT = sin(x), s = 2 sin(x) cos(t) + 2 sin(t) cos(x),

on the domain (x, t) ∈ [0, π] × [0, π/2] with the exact solution u(x, t) =

sin(t) sin(x) and f = − sin(x). The problem (1)–(5) with these data was also
considered for α = 1 in [29]. With same parameters, the Landweber-type
algorithm discussed in [29], gives the following errors with seven iterations

∥u7(x, T )− ψT (x)∥ ≤ 10−4,

∥f7 − f∥ ≤ 0.018.

The proposed scheme, that is, the space-time Galerkin LS-SVR algorithm,
gives the following results after seven iterations

∥u7(x, T )− ψT (x)∥ ≤ 1.31e− 05,

∥f7 − f∥ ≤ 2.27e− 03.
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We report the numerical errors as well as the convergence rates in terms of
L∞, L2, and H1 measures versusM with N = 16 and α = 1, to demonstrate
the spatial convergence of our proposed scheme for the wave and source func-
tions in Tables 2 and 3, respectively. Running time is also reported for these
results. It is worth noting that the results of Tables 2 and 3 are obtained at
once, giving wave and source functions, respectively. Therefore, the time is
reported only for one of these tables.

Table 2: L∞, L2, and H1 errors and spatial convergence rates of the wave function
versus M with N = 16 and α = 1 for Example 1.

M L∞ EOC L2 EOC H1 EOC time (s)
2 5.22e-02 2.33e-02 1.01e-01 2.01
4 1.44e-03 5.1799 7.16e-04 5.0242 5.29e-03 4.2549 10.61
6 1.98e-05 10.5723 9.12e-06 10.7610 1.34e-04 9.0655 29.53
8 1.48e-07 17.0196 6.99e-08 16.9324 2.68e-06 13.5984 63.94
10 1.34e-09 21.0830 5.10e-10 22.0504 3.07e-08 20.0289 113.37
12 1.86e-11 23.4600 8.21e-12 22.6471 2.92e-10 25.5333 194.41

The spectral convergence of the method is seen in Figures 1 and 2 in
which a linear semi-log plot verifies the exponential convergence for the wave
and source functions, respectively, for α = 1.

Table 3: L∞, L2, and H1 errors and spatial convergence rates for the source function
f versus M with N = 16 and α = 1 for Example 1 time is the same as 2.

M ∥f − fN∥∞ EOC ∥f − fN∥2 EOC ∥f − fN∥H1
EOC

2 5.04e-01 2.38e-01 6.06e-01
4 5.78e-02 3.1243 2.72e-02 3.1293 1.35e-01 2.1664
6 2.64e-03 7.6115 1.18e-03 7.7385 9.95e-03 6.4314
8 6.95e-05 12.6432 3.11e-05 12.6392 3.34e-04 11.7984
10 1.06e-06 18.7460 4.73e-07 18.7586 6.07e-06 17.9606
12 1.08e-08 25.1560 4.83e-09 25.1438 4.59e-08 26.7914

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1037–1068



1055 A space-time least-squares support vector regression scheme for inverse ...

Figure 1: L∞, L2, and H1 errors for the wave function versus M with N = 16 and α = 1

for Example 1.

Tables 4, 5, and 6 demonstrate the spatial convergence of our proposed
scheme as well as the running time for the wave function versus M with
N = 16 for some fractional orders.

Table 4: L∞, L2, and H1 errors and spatial convergence rates of the wave function
versus M with N = 16 and α = 0.1 for Example 1.

M L∞ EOC L2 EOC H1 EOC time (s)
2 5.76e-02 3.03e-02 9.76e-02 2.06
4 1.61e-03 5.1609 7.61e-04 5.3153 5.15e-03 4.2442 10.98
6 7.34e-05 7.6161 3.48e-05 7.6086 1.41e-04 8.8737 26.01
8 4.61e-07 17.6246 2.10e-07 17.7636 2.71e-06 13.7367 55.78
10 3.03e-09 22.5184 1.24e-09 22.9986 3.12e-08 20.0063 162.14
12 2.87e-11 25.5561 1.46e-11 24.3627 2.75e-10 25.9509 257.39
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Figure 2: L∞, L2, and H1 errors for the source function versus M with N = 16 and
α = 1 for Example 1.

The spectral convergence of the method is seen in Figures 3, 4, and 5,
where a linear semi-log plot verifies the exponential convergence for the wave
function for some fractional derivatives.

Table 5: L∞, L2, and H1 errors and spatial convergence rates of the wave function
versus M with N = 16 and α = 0.5 for Example 1.

M L∞ EOC L2 EOC H1 EOC
2 5.22e-02 2.26e-02 9.72e-02
4 1.55e-03 5.0737 7.48e-04 4.9171 5.21e-03 4.2216
6 4.23e-05 8.8817 1.95e-05 8.9946 1.30e-04 9.1026
8 3.00e-07 17.2022 1.36e-07 17.2604 2.67e-06 13.5061
10 2.25e-09 21.9269 8.78e-10 22.5987 3.09e-08 19.9830
12 2.47e-11 24.7468 1.27e-11 23.2339 2.80e-10 25.7990

Now, we investigate the effect of increasing the number of training points
in the time direction. To do so, we fix the number of used polynomials in the
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Figure 3: L∞, L2, and H1 errors for the wave function versus M with N = 16 and
α = 0.1 for Example 1.

Table 6: L∞, L2, and H1 errors and spatial convergence rates of the wave function
versus M with N = 16 and α = 0.9 for Example 1.

M L∞ EOC L2 EOC H1 EOC
2 5.22e-02 2.27e-02 1.01e-01
4 1.46e-03 5.1600 7.24e-04 4.9706 5.28e-03 4.2577
6 2.24e-05 10.3021 1.06e-05 10.4175 1.33e-04 9.0793
8 1.72e-07 16.9261 7.97e-08 16.9991 2.67e-06 13.5854
10 1.51e-09 21.2212 5.69e-10 22.1478 3.07e-08 20.0121
12 2.47e-11 24.7468 1.27e-11 23.2339 2.80e-10 25.7990

space dimension M = 15. We report the L∞, L2, and H1 errors to show the
temporal convergence of our proposed scheme for the wave function versus
N and α = 1, α = 0.5 in Tables 7 and 8, respectively.

The temporal convergence of our proposed scheme for the wave function
versus N with M = 15 and α = 1, α = 0.5 in Figures 6 and 7, respectively.
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Figure 4: L∞, L2, and H1 errors for the wave function versus M with N = 16 and
α = 0.5 for Example 1.

Table 7: L∞, L2, and H1 errors and temporal convergence rates of the wave function
versus N with M = 15 and α = 1 for Example 1.

N L∞ EOC L2 EOC H1 EOC
2 6.85e-02 3.41e-02 4.83e-02
4 1.94e-03 5.1420 8.92e-04 5.2566 1.60e-03 4.9159
6 7.69e-06 13.6400 3.24e-06 13.8554 5.08e-06 14.1873
8 2.26e-08 20.2645 1.21e-08 19.4316 1.63e-08 19.9592
10 6.32e-11 26.3481 3.28e-11 26.4876 4.55e-11 26.3562
12 2.26e-13 30.8988 1.06e-13 31.4540 1.41e-12 19.0549

The next example illustrates the convergence of the proposed method in
space and time for the wave and source functions in a nonlinear case.

Example 2. Consider the problem (1) with the same parameters but the
nonlinear function g(u) = u2,

s = sin2(x) cos2(t) + 2 sin(t) sin(x) + cos(t) sin(x),
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Figure 5: L∞, L2, and H1 errors for the wave function versus M with N = 16 and
α = 0.9 for Example 1.

Table 8: L∞, L2, and H1 errors and temporal convergence rates of the wave function
versus N with M = 15 and α = 0.5 for Example 1.

N L∞ EOC L2 EOC H1 EOC
2 6.85e-02 3.41e-02 4.83e-02
4 2.38e-03 4.8471 1.11e-03 4.9411 1.72e-03 4.8115
6 9.07e-06 13.7370 3.86e-06 13.9628 5.89e-06 14.0008
8 2.94e-08 19.9238 1.53e-08 19.2246 2.16e-08 19.4948
10 8.05e-11 26.4426 4.25e-11 26.3781 5.83e-11 26.5069
12 4.18e-13 28.8530 1.88e-13 29.7322 1.49e-12 20.1119

on the same domain [0, π]× [0, π/2] as for Example 1 with the exact solution
u(x, t) = sin(t) sin(x) and f(x) = − sin(x). The problem (1)–(5) with these
data was also considered for α = 1 in [29]. The results (errors) obtained by
the Landweber-type algorithm discussed in [29] with 13 iterations are

∥u13(x, T )− ψT (x)∥ ≤ 0.001,
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Figure 6: L∞, L2, and H1 errors for the wave function versus N with M = 15 and α = 1

for Example 1.

∥f13 − f∥ ≤ 0.02.

By the proposed scheme of this paper for this example with 13 iterations, the
following results are obtained

∥u13(x, T )− ψT (x)∥ ≤ 1.90e− 11,

∥f13 − f∥ ≤ 8.66e− 09.

We report the numerical errors as well as the convergence rates in terms of
L∞, L2, and H1 measures versus M with N = 16 and α = 1 to demonstrate
the spatial convergence of our proposed scheme for the wave and source func-
tions in Tables 9 and 10, respectively.

The spectral convergence of the method is seen in Figures 8 and 9 in
which linear semi-log plot verifies the exponential convergence for the wave
and source functions, respectively, for α = 1.
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Figure 7: L∞, L2, and H1 errors for the wave function versus N with M = 15 and
α = 0.5 for Example 1.

Table 9: L∞, L2, and H1 norm errors of the wave function versus M with N = 16 and
α = 1 for the time-fractional wave equation using space-time Galerkin LS-SVR.

M L∞ EOC L2 EOC H1 EOC
2 5.84e-02 3.08e-02 9.77e-02
4 1.62e-03 5.1719 7.56e-04 5.3484 5.11e-03 4.2570
6 7.13e-05 7.7030 3.48e-05 7.5923 1.41e-04 8.8545
8 3.92e-07 18.0873 1.77e-07 18.3579 2.62e-06 13.8541
10 2.40e-09 22.8364 9.66e-10 23.3515 3.07e-08 19.9274
12 2.45e-11 25.1454 1.24e-11 23.8889 2.74e-10 25.8822

Table 11 demonstrates the convergence in time of the proposed scheme
for the wave function, versus N with M = 15 for α = 0.5.

The spectral convergence in time of the method is seen in Figure 10 in
which a linear semi-log plot verifies the exponential convergence for the wave
function for α = 0.5.
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Figure 8: L∞, L2, and H1 errors for the wave function versus M with N = 16 and α = 1

for Example 2.

Table 10: L∞, L2, and H1 errors and spatial convergence rates of the source function
versus M with N = 16 and α = 1 for Example 2.

M ∥f − fN∥∞ EOC ∥f − fN∥2 EOC ∥f − fN∥H1
EOC

2 4.76e-01 2.23e-01 5.12e-01
4 5.48e-02 3.1187 2.55e-02 3.1285 1.24e-01 2.0458
6 2.63e-03 7.4894 1.20e-03 7.5379 1.07e-02 6.0425
8 6.95e-05 12.6300 3.12e-05 12.6864 3.51e-04 11.8784
10 1.06e-06 18.7460 4.73e-07 18.7730 6.08e-06 18.1757
12 1.08e-08 25.1560 4.83e-09 25.1438 5.05e-08 26.2766

As observed from the numerical results, the proposed LS-SVR, which
employs orthogonal kernels with Legendre polynomials, yields approximate
models with the desired accuracy and demonstrates favorable convergence
behavior as the number of training points in both dimensions increases.
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Figure 9: L∞, L2, and H1 errors for the source function versus M with N = 16 and
α = 1 for Example 2.

Table 11: L∞, L2, and H1 errors of the source function and temporal convergence rates
versus N with M = 15 and α = 1 for Example 2.

N L∞ EOC L2 EOC H1 EOC
2 6.85e-02 3.41e-02 4.83e-02
4 2.40e-03 4.8350 1.13e-03 4.9154 1.67e-03 4.8541
6 9.55e-06 13.6305 4.23e-06 13.7811 6.45e-06 13.7040
8 3.25e-08 19.7546 1.65e-08 19.2803 2.34e-08 19.5323
10 8.37e-11 26.7171 4.59e-11 26.3716 6.30e-11 26.5182
12 5.87e-13 27.2045 2.83e-13 27.9110 1.66e-12 19.9445

5 Conclusion

In this study, we addressed an inverse source problem concerning the time-
fractional wave equation. We presented a space-time Galerkin LS-SVR for the
numerical simulation of the problem. We employed an orthogonal polynomial
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Figure 10: L∞, L2, and H1 errors for the wave function versus N with M = 15 and
α = 0.5 for Example 2.

kernel in both space and time variables simultaneously. We presented the
method as a quadratic programming problem and subsequently transformed
it into a system of linear algebraic equations by introducing dual variables.
The structure of the resulting system was also discussed, and some numerical
test problems were given to demonstrate the efficacy of the proposed method.
The method can be further developed for the reconstruction of sources in the
presence of noisy data in future works as well as for other cases of inverse
problems.
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