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Abstract

The present article introduces an operational approach based on modi-
fied hat functions to solve the space-time-fractional differential equations in
the Caputo sense. In this method, the derivative of the unknown function
is considered as a linear combination of modified hat functions. We use the
operational matrix of the Riemann–Liouville fractional integral of modified
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hat functions to approximate the Caputo fractional derivative in order to
reduce the problem to a system of Sylvester equations. The error of the
mentioned method is of the order O(h3). In addition, we examine several
numerical examples to confirm the ability of the proposed approach.

AMS subject classifications (2020): Primary: 26A33; Secondary: 65M15, 65D25.

Keywords: Modified hat functions; Space-time-fractional differential equa-
tions; Operational matrix; Caputo fractional derivative.

1 Introduction

Fractional calculus including integral and derivative of arbitrary orders has
effectively played an important role in engineering, physics, and various prob-
lems modeling during the past decades [26, 6]. The non-locality feature can
be the main reason for using fractional calculus in applied problem modeling
[21]. This characteristic refers to the property of a dynamical system where
the future state of the system is influenced by all of its previous states. The
growing usage of fractional differential equations in various applications has
sparked significant interest in the development of numerical methods for their
solutions. Several approaches have been devised to tackle these problems, as
follows:

• Adomian decomposition method: This method involves decomposing
fractional differential equations into a series of simpler equations and
solving them iteratively. It has been applied in various fields such as
physics, engineering, and biology [7, 11].

• Generalized differential transform method: This technique applies the
differential transform method to fractional differential equations, en-
abling the solution through a series expansion. It has been used in
solving a wide range of fractional problems [16, 20, 9].

• Variational iteration method: The variational iteration method con-
structs an iterative sequence of corrections to approximate the solution
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1205 Modified hat functions: Application in space-time-fractional differential ...

of a fractional differential equation. It has been successfully employed
in various scientific and engineering problems [19].

• Finite difference method: The finite difference method, which is widely
used in numerical analysis, discretizes the fractional differential equa-
tion on a grid and approximates the derivatives using finite difference
formulas. It is a common and versatile approach for solving fractional
differential equations [25, 15].

• Homotopy analysis method: The homotopy analysis method constructs
a series solution by introducing an auxiliary parameter. By controlling
this parameter, the solution can be refined iteratively, leading to accu-
rate approximations for fractional differential equations [10].

• Wavelet method: The wavelet method applies wavelet theory to ap-
proximate the solution of fractional differential equations. It provides
a robust framework for analyzing and solving fractional problems, par-
ticularly those with irregular or discontinuous solutions [4, 13, 5].

These methods offer various approaches to tackle the challenges posed by
fractional differential equations, and their suitability depends on the specific
characteristics of the problem. The cited references provide more detailed
information on each method’s theoretical foundations and practical applica-
tions. In recent decades, a limited number of algorithms have been proposed
to solve numerical space-time-fractional differential problems [24, 12, 27].

In this work, we focus on a type of linear space-time-fractional model as
follows:

Dα
xU (x, z) +Dβ

z U (x, z) = F (x, z), (x, z) ∈ [0, 1]× [0, 1], (1)

with the following initial and boundary conditions

U (0, z) = θ1(z), U (x, 0) = θ2(x),

D1
zU (0, z) = φ1(z), D1

xU (x, 0) = φ2(x),
(2)

where Dα
xU (x, z) and Dβ

z U (x, z) are the Caputo fractional derivative with
respect to x and z of order α and β with 0 < α, β ≤ 1, respectively. Also,
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U (x, z) is the unknown function and F (x, z), φ1(z), φ2(x), θ1(z) and θ2(x)

are known continuous functions.

In the suggested approach of this investigation, the function U (x, z),
which is not known, is expanded using the introduced modified hat functions.
By employing integration and the fractional integral operational matrix, the
approximations for U (x, z), Dα

xU (x, z) and Dβ
z U (x, z) will be derived. This

described method transforms the primary problem into an algebraic equation,
enabling the computation of the unknown coefficients in the expansion.

It is important to note that the strengths and weaknesses of the oper-
ational matrix method depend on the specific problem and the implemen-
tation details. Consideration should be given to the specific requirements
and characteristics of the problem at hand when choosing an appropriate
numerical method. The operational matrix method provides efficient solu-
tions for systems of ordinary and partial differential equations. It allows
for the conversion of differential equations into algebraic equations, which
can be solved using standard matrix techniques. By using higher-order ap-
proximation functions or increasing the number of terms in the expansion,
the accuracy can be improved. The operational matrix methods are usually
straightforward and well-suited for numerical computation. This makes the
method relatively easy to implement with computationally efficient. Also, the
convergence of the operational matrix method can be affected by the choice
of approximation functions or the number of terms used in the expansion.
In some cases, convergence may be slow, requiring additional computational
resources or modifications to improve accuracy. On the other hand, incor-
porating boundary conditions into the operational matrix method can be
challenging, especially for problems with complex or non-standard boundary
conditions. Special techniques or modifications may be required to handle
such cases effectively. This methodology has been widely utilized in numer-
ous scholarly papers, showcasing its remarkable effectiveness and accuracy
[3, 14, 1, 2, 22].

The structure of this paper is summarized as follows:

• Section 2 begins by presenting essential definitions and mathematical
foundations for fractional calculus.
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• In section 3, we conduct a thorough examination of modified hat func-
tions.

• Section 4 is dedicated to the development of a numerical technique for
addressing space-time-fractional partial differential equations.

• In section 5, an error estimate for the proposed method is derived.

• Moving on to section 6, we apply the devised method to solve a variety
of fractional partial differential equations with numerical examples.

• Ultimately, the article concludes in section 7 with a summary of our
findings and insights.

2 Fractional calculus

Herein, we express the information required for research work.

Definition 1 (see [23]). Let 0 < α ≤ 1 and 0 < β ≤ 1 be real values and let
u : [0, 1]2 → R be a continuous function. The Caputo fractional derivatives
of u concerning x and z are defined as

Dα
xu(x, z) =


1

Γ(1− α)

∫ x

0

(x− r)−α ∂u(r, z)

∂r
dr, α ∈ (0, 1),

∂u(x, z)

∂x
, α = 1,

(3)

and

Dβ
z u(x, z) =


1

Γ(1− β)

∫ z

0

(z − s)−β ∂u(x, s)

∂s
ds, β ∈ (0, 1),

∂u(x, z)

∂z
, β = 1.

(4)

Definition 2 (see [21]). For 0 < α ≤ 1 and given function h, the Riemann–
Liouville fractional integral with order of α is defined by

Iαz h(z) =


1

Γ(α)

∫ z

0

(z − s)α−1h(s)ds, α ∈ (0, 1),

h(z), α = 0.

(5)

Based on the next lemma, Caputo fractional derivatives and Riemann–
Liouville fractional integrals can be considered as reciprocal operations.
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Lemma 1 (see [18]). If 0 < z and 0 < β < α ≤ m ∈ N, then

Iα−β
z Dα

z f(z) = Dβ
z f(z)−

m−1∑
l=⌈β⌉

f (l)(0)
zl−β

Γ(l − β + 1)
, (6)

where ⌈·⌉ is the ceiling function.

3 Modified hat functions

We now focus on modified hat functions and some of their properties. In this
research study, the modified hat functions are used for approximating space
and time variables.

Definition 3 (see [17, 18]). Let the interval [0, tf ] be divided into n sub-
intervals [jh, (j +1)h] for j = 0, 1, 2, . . . , n− 1, where 2 ≤ n and n is an even
integer with h =

tf
n . The modified hat functions {Hk(z)}nk=0 on [0, tf ] are

defined as follows:

H0(z) =


(z − h)(z − 2h)

2h2
, 0 ≤ z ≤ 2h,

0, otherwise,
(7)

for odd index k with 1 ≤ k ≤ n− 1,

Hk(t) =


−(z − (k − 1)h)(z − (k + 1)h)

h2
, (k − 1)h ≤ z ≤ (k + 1)h,

0, otherwise,
(8)

for even index k with 2 ≤ k ≤ n− 2,

Hk(z) =


(z − (k − 1)h)(z − (k − 2)h)

2h2
, (k − 2)h ≤ z ≤ kh,

(z − (k + 1)h)(z − (k + 2)h)

2h2
, kh ≤ z ≤ (k + 2)h,

0, otherwise ,

(9)

and

Hn(z) =


(z − (tf − h))(z − (tf − 2h))

2h2
, tf − 2h ≤ z ≤ tf ,

0, otherwise.
(10)
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The modified hat functions exhibit noteworthy characteristics that render
them highly advantageous for various applications. Several of these notable
properties are as follows:

• These functions satisfy in the Kronecker delta condition as

Hk(jh) = δkj .

• The sum of the modified hat functions {Hk(z)}nk=0 is one, that is,

n∑
k=0

Hk(z) = 1.

• The explicit formula for integral of these functions is obtained as follows:

∫ tf

0

Hk(z)dz =


h

3
, k = 0, n,

4h

3
, k is odd and 1 ≤ k ≤ n− 1,

2h

3
, k is even and 2 ≤ k ≤ n− 2.

(11)

Any function f(z) ∈ L2[0, tf ] can be represented via the modified hat func-
tions as

f(z) ≃ fn(z) =

n∑
k=0

fkHk(z) = FTH (z), (12)

in which fi = f(ih) and

H (z) = [H0(z), H1(z), . . . , Hn(z)]
T
, (13)

F = [f0, f1, . . . , fn]
T
. (14)

Moreover, every function y(x, z) in L2([0, 1]2) can be extended by the modi-
fied hat function as

y(x, z) ≃ yn(x, z) =

n∑
k=0

n∑
j=0

ykjHi(x)Hj(z) = H T (x)Y H (z), (15)

with ykj = y(xk, zj) = y(kh, jh).

Theorem 1 (see [17, 18]). For γ > 0, assume that H (z) is the vector
introduced in the relation (13). Then, we get
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Iγz H (z) ≃ R(γ)H (z), (16)

in which R(γ) is an (n+ 1)× (n+ 1) square matrix as

R(γ) =
hγ

2Γ(γ + 3)



0 pγ
1 pγ

2 pγ
3 pγ

4 . . . pγ
n−1 pγ

n

0 qγ
0 qγ

1 qγ
2 qγ

3 . . . qγ
n−2 qγ

n−1

0 wγ
−1 wγ

0 w1 wγ
2 . . . wγ

n−3 wγ
n−2

0 0 0 qγ
0 qγ

1 . . . qγ
n−4 qγ

n−3

0 0 0 wγ
−1 wγ

0 . . . wγ
n−5 wγ

n−4

...
...

...
...

...
...

...

0 0 0 0 0 . . . qγ
0 qγ

1

0 0 0 0 0 . . . wγ
−1 wγ

0


, (17)

where

pγ
l =


γ(3 + 2γ), l = 1,

lγ+1(2l − 6− 3γ) + 2lγ(1 + γ)(2 + γ)

−(l − 2)
γ+1

(2l − 2 + γ), 2 ≤ l ≤ n,

(18)

qγ
l =


4(1 + γ), l = 0,

4
[
(l − 1)

γ+1
(l + 1 + γ)

−(l + 1)
γ+1

(l − 1− γ)
]
, 1 ≤ l ≤ n− 1,

(19)

and

wγ
l =



−γ, l = −1,

2γ+1(2− γ), l = 0,

3γ+1(4− γ)− 6(2 + γ), l = 1,

(l + 2)
γ+1

(2l + 2− γ)− 6lγ+1(2 + γ)

−(l − 2)
γ+1

(2l − 2 + γ), 2 ≤ l ≤ n− 2.

(20)

4 Numerical method

This section is devoted to the implementation of a numerical approach for
the problem (1)–(2) by the modified hat functions. For this purpose, we have
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D1
x(D

1
z U (x, z)) ≃ H T (x)AH (z), (21)

where

A =


0 0 . . . 0

0 a11 . . . a1n
...

...
. . .

...

0 an1 . . . ann

 . (22)

From the relations (2), (16), and (21), we obtain

D1
xU (x, z) =

∫ z

0

(
D1

x(D
1
z U (x, z))

)
dz +D1

xu(x, 0)

≃
∫ z

0

H T (x)AH (z)dz + φ2(x)

= H T (x)AR(1)H (z) + φ2(x).

(23)

Similarly, it can be concluded

D1
zU (x, z) =

∫ x

0

(
D1

x(D
1
z U (x, z))

)
dx+D1

zU (0, z)

≃
∫ z

0

H T (x)AH (z)dx+ φ1(z)

= H T (x)
(
R(1)

)T
AH (z) + φ1(z).

(24)

So, we take the integral from D1
xU (x, z) with respect to x of order 1 to make

an approximation of U (x, z) as follows:

U (x, z) ≃ H T (x)
(
R(1)

)T
AR(1)H (z) + û(x, 0) + u(0, z)

= H T (x)
(
R(1)

)T
AR(1)H (z) + θ̂2(x) + θ1(z),

(25)

in which θ̂2(x) is θ2(x) without its scalar. Replacing the relation (23) in (6),
we have

Dα
xU (x, z) = I1−α

x (D1
xU (x, z))− ϑ1

≃ I1−α
x

(
H T (x)AR(1)H (z) + φ2(x)

)
− ϑ1

= H T (x)
(
R(1−α)

)T
AR(1)H (z) + I1−α

x (φ2(x))− ϑ1,

(26)

and
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Dβ
z U (x, z) = I1−β

z (D1
zU (x, z))− ϑ2

≃ I1−β
z

(
H T (x)

(
R(1)

)T
AH (z) + φ1(z)

)
− ϑ2

= H T (x)
(
R(1)

)T
AR(1−β)H (z) + I1−β

z (φ1(z))− ϑ2,

(27)

where ϑ1 = U
(1)
x (0, 0) and ϑ2 = U

(1)
z (0, 0) are the known scalars. Therefore,

by replacing the relation (26) and (27) in (1), we have

(H T (x)
(
R(1−α)

)T
AR(1)H (z) + I1−α

x (φ2(x))− ϑ1)

+ (H T (x)
(
R(1)

)T
AR(1−β)H (z) + I1−β

z (φ1(t))− ϑ2) = F (x, z).
(28)

Consider the function g(x, z) as follows:

g(x, z) = F (x, z)− I1−α
x

(
φ2(x)

)
− I1−β

z

(
φ1(z)

)
+ ϑ1 + ϑ2. (29)

Now, we approximate the g(x, z) via the modified hat functions as

g(x, z) ≃ H T (x)GH (z), (30)

in which G is a square matrix of rank (n + 1) with gij = g(xi, zj). So, the
relation (28) reduces to (31) as

H T (x)
(
R(1−α)

)T
AR(1)H (z) + H T (x)

(
R(1)

)T
AR(1−β)H (z)

= H T (x)GH (z).
(31)

By removing the vectors H T (x) and H (z) from both sides of the equation
(31), we will have the following Sylvester-type equation [8]:(

R(1−α)
)T

AR(1) +
(
R(1)

)T
AR(1−β) = G. (32)

After solving (32) and replacing the values of aij in the relation (25), the
approximate solution of U (x, z) is obtained.

5 Error estimation

In this section, we derive an error estimate for the proposed method. For
this issue, we first recall the following theorem from the reference [17].
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Theorem 2. If the function f(·) ∈ C3[0, tf ] is approximated by the set of
modified hat functions as fn(t) =

∑n
i=0 f(ih)Hi(t), then |f(t) − fn(t)| =

O(h3), where 2 ≤ n and n is an even integer with h =
tf
n .

Let sufficiently smooth function u(x, z) be the exact solution of the orig-
inal problem (1)–(2). Assume that u(x, z) can be separated as a product of
two functions F (x) and G(z), that is,

u(x, z) = F (x)G(z).

Now, by approximating F (x) and G(z) using modified hat functions, we get

F (x) = FTH (x) +O(h3), G(z) = GTH (z) +O(h3),

where Fi := F (xi) and Gj := G(zj). So u(x, z) = H T (x)FGTH T (z) +

O(h3). This shows that the error of a two-dimensional function estimated by
modified hat functions is of the order O(h3). With this explanation and by
(21), we have thus derived the following relation:

|D1
x(D

1
z U (x, z))− H T (x)AH (z)| = O(h3).

Now from (25), since the functions θ̂2(x) and θ1(z) are known, by ignoring
the operational matrix error, we have

|U (x, z)− Un(x, z)|

= |I1z (I1x(D1
x(D

1
z U (x, z))))− H T (x)

(
R(1)

)T
AR(1)H (z)|

= O(h3).

(33)

This shows that the convergence rate of the suggested method is O(h3).

6 Illustrative examples

In this section, we examine the presented numerical method to solve the
problem (1)–(2) and compare the results with their exact solutions using
Maple2020 software. In each example, the error En is defined by

En(U ) =
1

n2

 n∑
i=0

n∑
j=0

(
U (ih, jh)− Un(ih, jh)

)2

 1
2

, (34)
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where U and Un are the exact and numerical solutions, respectively. Also,
the error function is plotted for each example by |U (x, z) − Un(x, z)|. All
examples are numerically approximated with the help ofMaple 2020 software
on a laptop with CPU 3.1 GHz and Core i5.

Example 6.1. Consider the non-homogeneous space-time fractional problem
with the following form:

D
1
4
x U (x, z) +D

1
4
z U (x, z) = F (x, z), x, z ∈ [0, 1], (35)

in which
F (x, z) =

4(x
3
4 z + xz

3
4 )

3Γ( 34 )
, (36)

with

D1
xU (0, z) = D1

zU (x, 0) = U (0, z) = U (x, 0) = 0. (37)

The exact solution is U (x, z) = xz. So, it can be written that

I
3
4
x (φ2(x)) = I

1
4
z (φ1(z)) = ϑ1 = ϑ2 = 0. (38)

According to the relations (17) and (30) with n = 2, we get

G =



0 0 0

0
2 2

1
4

3 Γ(
3

4
)

4(
1

2
+

2
1
4

2
)

3 Γ(
3

4
)

0
4(

1

2
+

2
1
4

2
)

3 Γ(
3

4
)

8

3 Γ(
3

4
)


,

R(1) =


0

5

24

1

6

0
1

3

2

3

0 − 1

24

1

6

 , R
(
3

4
)
=



0
27 2

1
4

32 Γ(
15

4
)

9

16 Γ(
15

4
)

0
7 2

1
4

4 Γ(
15

4
)

3

Γ(
15

4
)

0 − 3 2
1
4

16 Γ(
15

4
)

5

4 Γ(
15

4
)


.

(39)

Then, we can rewritten (31) as
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H T (x)
(
R( 3

4 )
)T

AR(1)H (z) + H T (x)
(
R(1)

)T
AR( 3

4 )H (z) = H T (x)GH (z)),

(40)

which reduces to (
R( 3

4 )
)T

AR(1) +
(
R(1)

)T
AR( 3

4 ) = G. (41)

We solve (41) using Maple software and obtain the approximation U (x, z)

with the relation (25). The exact and numerical solutions with n = 2 are
shown in Figure 1. The numerical solution with n = 8 is displayed in Figure
2. Also, error functions with n = 2 and n = 8 are shown in Figure 3 in which
E2(U ) = 0.00086 and E8(U ) = 0. We list the absolute error for different
values of n in Example 6.1 in Table 1.

Figure 1: The exact and numerical solutions with n = 2 for Example 6.1.

Figure 2: Numerical solution with n = 8 for Example 6.1.
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Figure 3: Error function |U (x, z)− Un(x, z)| with n = 2 and n = 8 for Example 6.1.

Table 1: The absolute error for different values of n in Example 6.1

(x, t) n = 2 n = 4 n = 6 n = 8

(0, 0) 0 0 0 0

(0.2, 0.2) 0.0058 0.0042 0.0025 0.00060

(0.4, 0.4) 0.017 0.0024 0.00035 0.0026

(0.6, 0.6) 0.022 0.00079 0.0019 0.0023

(0.8, 0.8) 0.0096 0.010 0.0041 0.000048

(1, 1) 0.038 0.013 0.0059 0.0027

Example 6.2. Consider the following fractional space-time fractional model:

D
1
3
x U (x, z) +D

1
2
z U (x, z) = F (x, z), 0 ≤ x, z ≤ 1, (42)

where
F (x, z) =

Γ(3)x
5
3

Γ(
8

3
)

+
Γ(3)z

3
2

Γ(
5

2
)
, (43)

with

D1
zU (0, z) = 2z, D1

xU (x, 0) = 2x, U (0, z) = z2, U (x, 0) = x2. (44)

The exact solution is U (x, z) = x2 + z2. Now, we calculate the following
values:
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I

2
3
x (φ2(x)) = I

2
3
x (2x) =

2Γ(2)

Γ( 83 )
x

5
3 ,

I
1
2
z (φ1(z)) = I

1
2
z (2z) =

2Γ(2)

Γ( 52 )
z

3
2 ,

ϑ1 = ϑ2 = 0.

(45)

Therefore, we get

g(x, z) =

(
Γ(3)x

5
3

Γ(
8

3
)

+
Γ(3)z

3
2

Γ(
5

2
)

)
− 2Γ(2)

Γ( 83 )
x

5
3 − 2Γ(2)

Γ( 52 )
z

3
2 = 0.

Equation (32) is rewritten as follows:(
R( 2

3 )
)T

AR(1) +
(
R(1)

)T
AR( 1

2 ) = 0. (46)

After solving Sylvester equation (46), based on (25), we obtain A = 0 and
U (x, z) = x2 + z2, which is the exact solution. The exact and numerical
solutions with n = 2 are plotted in Figure 4. Moreover, the error function is
shown in Figure 5 in which E2(U ) = 0.

Figure 4: The exact and numerical solutions with n = 2 for Example 6.2.

Example 6.3. Consider the following non-homogeneous fractional space-
time problem:

D
1
2
x U (x, z) +D

1
3
z U (x, z) = F (x, z), (x, z) ∈ [0, 1]2, (47)

with
F (x, z) =

(3t5
√
Πx)

4
+

729z
14
3

308Γ( 23 )
, (48)
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Figure 5: Error function with n = 2 for Example 6.2.

in which

D1
zU (0, t) = D1

xU (x, 0) = U (0, z) = U (x, 0) = 0. (49)

The exact solution is U (x, z) = x
3
2 t5. By calculating the operational matrices

of the orders 1

2
and 2

3
and then substituting them into (32), it can be obtained

a system of linear equations to calculate the unknown coefficients. Figure
6 shows the approximate and exact solutions of the fractional space-time
equation for n = 10.

Figure 6: The exact and numerical solutions with n=10 for Example 6.3.

Example 6.4. At the end, consider the space-time-fractional differential
equation as
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Dα
xU (x, z) +Dβ

z U (x, z) = F (x, z), (x, z) ∈ [0, 1]2, (50)

with the term source

F (x, z) =
Γ(3)x2−α(z2 + 1)

Γ(3− α)
+

Γ(3)z2−β(x2 + 1)

Γ(3− β)
, (51)

in which

D1
zU (0, t) = 2z, D1

xU (x, 0) = 2x, U (0, z) = z2 + 1, U (x, 0) = x2 + 1.

(52)

The analytical solution is U (x, z) = (x2 +1)(z2 +1) with α =
1

2
and β =

1

3
.

So, we obtain

g(x, z) =
Γ(3)x2−α(z2)

Γ(3− α)
+

Γ(3)z2−β(x2)

Γ(3− β)
.

Now, for n = 2, we get

G =


0 0 0

0 0.2648 0.9036

0 0.8642 2.8337

 . (53)

By replacing (53) in (32), this equation can be solved. The analytical and
numerical solutions with n = 2 are shown in Figure 7 in which E2(U ) =

0.0159.

Figure 7: The exact and numerical solutions with n = 2 for Example 6.4.
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7 Conclusion

In the present article, a numerical algorithm for solving space-time-fractional
problems was given. Using the derivative in the Caputo sense and the
Riemann–Liouville integral, we approximated the existing functions by mod-
ified hat functions. By replacing approximation with the main problem and
simplifying it, the fractional equation was reduced to a system of algebraic
equations. In the presented method, the linear space-time-fractional differ-
ential equation becomes a system of Sylvester equations, which is very easy
to solve. The coefficients of the basic functions can be easily calculated, but
it takes more time to find solutions closer to the real value. The solutions
obtained from solving the mentioned system in (25) are an approximate so-
lution of the main problem (1)–(2). The proposed approach has been used
for several examples. In each example, the approximation function Un(x, z)

and the error from its exact solution were calculated. The results obtained
demonstrated that the proposed technique has the capability to solve numer-
ically the space-time-fractional partial differential problem.
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