[1] S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations bymodifiedAdomian decompositionmethod, Applied Mathematics and Computation, 145(2-3): 887893 (2003)
[2] S. Abbasbandy, M. Jalili, Determination of optimal convergence-control parameter value in homotopy analysis method, Numerical Algorithms 64(4): 593-605 (2013)
[3] S. Abbasbandy, Y. Tan and S. J. Liao, Newton-homotopy analysis method for nonlinear equations, Appl. Math. Comput. 188: 1794-1800 (2007)
[4] F. Awawdeh, On new iterative method for solving systems of nonlinear equations, Numerical Algorithms, 54(3): 395409 (2010)
[5] E. Babolian, M. Jalili, Application of the Homotopy− Pad´e technique in the prediction of optimal convergence-control paramete, Computational and Applied Mathematics, article in press. DOI:10.1007/s40314-014-0123-1, (2014)
[6] J. Faires, R. Burden, Numerical Methods, Brooks Cole 3 edition, (2002)
[7] L. Fang, G. He, Some modifications of Newton’s method with higher order convergence for solving nonlinear equations, J. Comput. Appl. Math. 228: 296-303 (2009)
[8] L. Fang, G. He, An efficient Newton-type method with fifth-order convergence for Solving Nonlinear Equations, Comput. App. Math., 27(3): 269-274 (2008)
[9] J. Izadian, M. Mohammadzade Attar, M. Jalili, Numerical Solution of Deformation Equations in Homotopy Analysis Method, Applied Mathematical Sciences, 6(8): 357- 367 (2012)
[10] S. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation 147: 499-513 (2004)
[11] S. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat., 14: 983-997 (2009)
[12] S. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, PhD thesis, Shanghai Jiao Tong University, (1992)
[13] S. Liao,Y. Tan, A General Approach to Obtain Series Solutions Of Non-Linear Differential Equations, Stud. Appl. Math 119: 297-354 (2007)
[14] S. Liao, Beyond perturbation (Introduction to the homotopy analysis method), CHAPMAN and HALL , (2004)
[15] C.Y. Ku, W. Yeih, C.S. Liu, Solving Non-Linear Algebraic Equations by a Scalar Newton-homotopy Continuation Method, International Journal of Nonlinear Sciences and Numerical Simulation, 11(6): 435450 (2010)
[16] J. Stoer, R. Bulrish , Introduction to Numerical Analysis, Springer, (1991)
[17] Y. Wu, K.F. Cheung, Two-parameter homotopy method for nonlinear equations, Numerical Algorithms, 53(4): 555-572 (2010)
Send comment about this article