[1] Abu Arqub, O., El-Ajou, A., Bataineh, A.S., and Hashim, I. A representation of the exact solution of generalized Lane–Emden equations using a new analytical method, In Abstr. Appl. Anal. (Vol. 2013, No. 1, p. 378593), Hindawi, 2013.
[2] Agarwal, P. and El-Sayed, A.A. Vieta–Lucas polynomials for solving a fractional-order mathematical physics model, Adv. Diff. Equ. 2020(1) (2020) 1–18.
[3] Bu, W., Tang, Y., Wu, Y. and Yang, J. Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations, J. Comput. Phys. 293 (2015) 264–279.
[4] Caglar, N. and Caglar, H. B-spline solution of singular boundary value problems, Appl. Math. Comput. 182(2) (2006) 1509–1513.
[5] Chambré, P.L. On the solution of the Poisson-Boltzmann equation with application to the theory of thermal explosions, J. Chem. Phys. 20(11) (1952) 1795–1797.
[6] Chandrasekhar, S. Eddington: The most distinguished astrophysicist of his time, Cambridge University Press, 1983.
[7] Choudhury, M.D., Chandra, S., Nag, S., Das, S. and Tarafdar, S. Forced spreading and rheology of starch gel: Viscoelastic modeling with fractional calculus, Colloids Surf. A: Physicochem. Eng. Asp. 407 (2012) 64–70.
[8] Coimbra, C.F.M. Mechanics with variable-order differential operators, Annal. Phys. 12(11-12) (2003) 692–703.
[9] Cooper, G.R.J. and Cowan, D.R. Filtering using variable order vertical derivatives, Comput. Geosci. 30(5) (2004) 455–459.
[10] Davis, H.T. Introduction to nonlinear differential and integral equations, US Government Printing Office, 1961.
[11] Dehghan, M. and Shakeri, F. Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New Astron. 13(1) (2008) 53–59.
[12] Flandoli, F. and Tudor, C.A. Brownian and fractional Brownian stochastic currents via Malliavin calculus, J. Funct. Anal. 258(1) (2010) 279–306.
[13] Habibirad, A., Hesameddini, E., Heydari, M.H. and Roohi, R. An efficient meshless method based on the moving Kriging interpolation for twodimensional variable-order time fractional mobile/immobile advectiondiffusion model, Math. Method. Appl. Sci. 44(4) (2021) 3182–3194.
[14] He, J. H. and Ji, F. Y. Taylor series solution for Lane–Emden equation, J. Math. Chem. 57 (2019) 1932–1934.
[15] Heydari, M.H., Avazzadeh, Z. and Razzaghi, M. Vieta–Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg–Landau equations, Appl. Numer. Math. 165 (2021) 442–458.
[16] Heydari, M.H., Avazzadeh, Z. and Yang, Y. A computational method for solving variable-order fractional nonlinear diffusion-wave equation, Appl. Math. Comput. 352 (2019) 235–248.
[17] Heydari, M.H., Hooshmandasl, M.R. and Ghaini, F.M.M. An efficient computational method for solving fractional biharmonic equation, Comput. Math. Appl. 68(3) (2014) 269–287.
[18] Izadi, M. A discontinuous finite element approximation to singular Lane–Emden type equations, Appl. Math. Comput. 401 (2021) 126115.
[19] Izadi, M., Yüzbaşı, Ş. and Ansari, K.J. Application of Vieta–Lucas series to solve a class of multi-pantograph delay differential equations with singularity, Symmetry, 13(12) (2021) 2370.
[20] Karimi Dizicheh, A., Salahshour, S., Ahmadian, A. and Baleanu, D. A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane–Emden equations, Appl. Numer. Math. 153 (2020)443–456.
[21] Khalique, C. M. and Muatjetjeja, B. Lie group classification of the generalized Lane–Emden equation, Appl. Math. Comput. 210(2) (2009) 405–410.
[22] Kilicman, A., Shokhanda, R. and Goswami, P. On the solution of (n+1)-dimensional fractional m-burgers equation, Alex. Eng. J. 60(1) (2021) 1165–1172.
[23] Kumar, M. and Singh, N. Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems, Comput. Chem. Eng. 34(11) (2010)1750–1760.
[24] Lin, R., Liu, F., Anh, V. and Turner, I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput. 212(2) (2009) 435–445.
[25] Magin, R.L., Ingo, C., Colon-Perez, L., Triplett, W. and Mareci, T.H. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Micropor. Mesopor. Mat. 178 (2013) 39–43.
[26] Moghaddam, B.P., Yaghoobi, S. and Machado, J.A.T. An extended predictor-corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dyn. 11(6) (2016).
[27] Noor, Z.A., Talib, I., Abdeljawad, T. and Alqudah, M.A. Numerical study of Caputo fractional-order differential equations by developing new operational matrices of Vieta–Lucas polynomials, Fract. Fract. 6(2) (2022) 79.
[28] Parand, K., Yousefi, H. and Delkhosh, M. A numerical approach to solve Lane–Emden type equations by the fractional order of rational Bernoulli functions, Rom. J. Phys. 62(104) (2017) 1–24.
[29] Patnaik, S., Hollkamp, J.P. and Semperlotti, F. Applications of variableorder fractional operators: A review, Proc. R. Soc. A, 476(2234) (2020) 20190498.
[30] Podlubny, I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[31] Robbins, N. Vieta’s triangular array and a related family of polynomials, Int. J. Math. Math. Sci. 14(2) (1991) 239–244.
[32] Ross, B. and Samko, S. Fractional integration operator of variable order in the holder spaces hλ (x), Int. J. Math. Math. Sci. 18(4) (1995) 777–788.
[33] Sahu, P.K. and Mallick, B. Approximate solution of fractional order Lane–Emden type differential equation by orthonormal Bernoulli’s polynomials, Int. J. Appl. Comput. Math. 5(3) (2019) 1–9.
[34] Samko, S.G. and Ross, B. Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct. 1(4) (1993) 277–300 1993.
[35] Shokhanda, R. and Goswami, P. Solution of generalized fractional burgers equation with a nonlinear term, Int. J. Appl. Comput. Math. 8(5) (2022) 1–14.
[36] Shokhanda, R., Goswami, P., He, J.H. and Althobaiti, A. An approximate solution of the time-fractional two-mode coupled burgers equation, Fract. Fract. 5(4) (2021) 196.
[37] Singh, R., Das, N. and Kumar, J. The optimal modified variational iteration method for the Lane–Emden equations with Neumann and Robin boundary conditions, Eur. Phys. J. Plus, 132 (2017) 1–11.
[38] Sun, H., Chen, W. and Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling, Physica A Stat. Mech. Appl. 388(21) (2009) 4586–4592.
[39] Sweilam, N.H., Nagy, A.M., Assiri, T.A. and Ali, N.Y. Numerical simulations for variable-order fractional nonlinear delay differential equations, J. Frac. Calc. Appl. 6(1) (2015) 71–82.
[40] Tseng, C.C. Design of variable and adaptive fractional order fir differentiators, Signal Process. 86(10) (2006) 2554–2566.
[41] VanGorder, R.A. An elegant perturbation solution for the Lane–Emden equation of the second kind, New Astron. 16(2) (2011) 65–67.
[42] Wazwaz, A.M. and Rach, R. Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane–Emden equations of the first and second kinds, Kybernetes, 40(9-10) (2011)1305–1318.
[43] Xie, L.J., Zhou, C.L. and Song Xu, S. Solving the systems of equations of Lane–Emden type by differential transform method coupled with Adomian polynomials, Math. 7(4) (2019) 377.
[44] Zhuang, P., Liu, F., Anh, V. and Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal. 47(3) (2009) 1760–1781.
Send comment about this article