1. Bitran, G.R. and Hax, A.C.Disaggregation and resource allocation using convex knapsack problems with bounded variables, Management Sci. 27(4) (1981) 431–441.
2. Brucker, P. An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3(3) (1984) 163–166.
3. Cominetti, R., Mascarenhas, W.F. and Silva, P.J.S. A Newton’s method for the continuous quadratic knapsack problem, Math. Program. Comput. 6(2) (2014) 151–169.
4. Dai, Y-H. and Fletcher, R. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. 106(3) (2006) 403–421.
5. de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M. Compu-tational geometry. Algorithms and applications. Third edition. Springer-Verlag, Berlin, 2008.
6. di Serafino, D., Toraldo, G., Viola, M. and Barlow, J. A two-phase gra-dient method for quadratic programming problems with a single linear constraint and bounds on the variables, SIAM J. Optim. 28(4) (2018) 2809–2838.
7. Dussault, J-P., Ferland, J.A. and Lemaire, B. Convex quadratic program-ming with one constraint and bounded variables, Math. Program. 36(1)(1986) 90–104.
8. Fletcher, R. Augmented lagrangians, box constrained QP and extensions, IMA J. Numer. Anal. 37(4) (2017) 1635–1656.
9. Helgason, R., Kennington, J. and Lall, H. A polynomially bounded algo-rithm for a singly constrained quadratic program, Math. Program. 18(3)(1980) 338–343.
10. IBM, Cplex performance tuning for quadratic programs,
https://www.ibm.com/support/pages/node/397129?mhsrc=ibmsearch_a&mhq=CPLEXPerformanceTuningforQuadraticPrograms, June 2018, [Online; accessed 23-January-2022].
11. Liu, M. and Liu, Y-J. Fast algorithm for singly linearly constrained quadratic programs with box-like constraints, Comput. Optim. Appl. 66(2) (2017) 309–326.
12. Pardalos, P.M., Ye, Y., and Han, C-G. Algorithms for the solution of quadratic knapsack problems, Linear Algebra Appl. 152 (1991), 69–91.
13. Patriksson, M. A survey on the continuous nonlinear resource allocation problem, European J. Oper. Res. 185(1) (2008) 1–46.
14. Patriksson, M. and Strömberg, C. Algorithms for the continuous non-linear resource allocation problem—new implementations and numerical studies, European J. Oper. Res. 243(3) (2015) 703–722.
15. Robinson, A.G., Jiang, N. and Lerme, C.S. On the continuous quadratic knapsack problem, Math. program. 55(1-3) (1992) 99–108.
16. Sharkey, T.C. and Romeijn, H.E. A class of nonlinear nonseparable con-tinuous knapsack and multiple-choice knapsack problems, Math. Program. 126(1) (2011) 69–96.
Send comment about this article