1. Abdelhakem, M., Moussa, H., Baleanu, D.,and El-Kady, M. Shifted Chebyshev schemes for solving fractional optimal control problems. J. Vib. Control, 25 (2019) 1–8.
2. Arshad, S., Yıldız, T. A., Baleanu, D., and Tang, Y. The role of obesity in fractional order tumor-immune model. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82(2) (2020) 181–196.
3. Bhrawy, A. H., Doha, E. H., Baleanu, D., Ezz-Eldien, S. S., and Ab-delkawy, M. A. An accurate numerical technique for solving fractional optimal control problems. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 16(1) (2015) 47–54.
4. Bhrawy, A. H., Doha, E. H., Tenreiro Machado, J. A., and Ezz‐Eldien, S. S. An efficient numerical scheme for solving multi‐dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control 17(6) (2015) 2389–2402.
5. Bhrawy, A. H., Ezz-Eldien, S. S., Doha, E. H., Abdelkawy, M. A., and Baleanu, D. Solving fractional optimal control problems within a Chebyshev–Legendre operational technique. Internat. J. Control 90(6) (2017) 1230–1244.
6. Caputo, M. Mean fractional-order-derivatives differential equations and filters. Ann. Univ. Ferrara Sez. VII (N.S.) 41 (1995), 73–84 (1997).
7. Daftardar-Gejji, V. (Ed.) Fractional Calculus and Fractional Differential Equations. Springer Singapore, 2019.
8. Ding, X., Cao, J., Zhao, X., and Alsaadi, F. E. Mittag-Leffler synchro-nization of delayed fractional-order bidirectional associative memory neu-ral networks with discontinuous activations: state feedback control and impulsive control schemes. Proc. A. 473 (2017), no. 2204, 20170322, 21pp.
9. El-Sayed, A. A., and Agaewal, P. Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre poly-nomials. Math. Methods Appl. Sci. 42(11) (2019) 3978–3991.
10. Ezz-Eldien, S. S., Doha, E. H., Baleanu, D., and Bhrawy, A. H. A numerical approach based on Legendre orthonormal polynomials for nu-merical solutions of fractional optimal control problems. J. Vib. Control, 23(1) (2017) 16–30.
11. Hassani, H., Avazzadeh, Z., and Machado, J. A. T. Solving two-dimensional variable-order fractional optimal control problems with tran-scendental Bernstein series. Journal of Computational and Nonlinear Dynamics 14(6) (2019).
12. Hassani, H., Machado, J. T., and Naraghirad, E. Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 75 (2019), 50–61.
13. Heydari, M. H., and Avazzadeh, Z. A computational method for solv-ing two‐dimensional nonlinear variable‐order fractional optimal control problems. Asian J. Control 22 (2020), no. 3, 1112–1126.
14. Kashkari, B. S., and Syam, M. I. Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with frac-tional order. Appl. Math. Comput. 290 (2016), 281–291.
15. Khan, M. W., Abid, M., Khan, A. Q., and Mustafa, G. (2020). Con-troller design for a fractional-order nonlinear glucose-insulin system us-ing feedback linearization. Transactions of the Institute of Measurement and Control. 42(13) (2020) 2372–2381.
16. Khan, R. A., and Khalil, H. A new method based on legendre polynomials for solution of system of fractional order partial differential equations. Int. J. Comput. Math. 91 (2014), no. 12, 2554–2567.
17. Kreyszing, E. Introductory functional analysis with applications. John Wiley & Sons, New York-London-Sydney, 1978.
18. Li, R., Cao, J., Alsaedi, A., and Alsaadi, F. Stability analysis of fractional-order delayed neural networks. Nonlinear Anal. Model. Con-trol 22(4) (2017 505–520.
19. Lotfi, A., Dehghan, M., and Yousefi, S. A. A numerical technique for solving fractional optimal control problems. Comput. Math. Appl. 62(3) (2011) 1055–1067.
20. Lotfi, A., Yousefi, S. A., and Dehghan, M. Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. JJ. Comput. Appl. Math. 250 (2013), 143–160.
21. Machado, J. T., Kiryakova, V., and Mainardi, F. Recent history of frac-tional calculus. Communications in nonlinear science and numerical sim-ulation, Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011) 1140–1153.
22. Miller, K. S., and Ross, B. An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.
23. Możaryn, J., Petryszyn, J.,and Ozana, S. PLC based fractional-order PID temperature control in pipeline: design procedure and experimental evaluation. Meccanica 56(4) (2021) 855–871.
24. Naik, P. A., Zu, J., and Owolabi, K. M. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos Solitons Fractals 138 (2020), 109826, 24 pp.
25. Nemati, S., Lima, P. M., and Torres, D. F. A numerical approach for solving fractional optimal control problems using modified hat functions. Commun. Nonlinear Sci. Numer. Simul. 78 (2019), 104849, 14 pp.
26. Nemati, A., and Yousefi, S. A. A numerical method for solving fractional optimal control problems using Ritz method. : J. Comput. Nonlinear Dyn. 11(5) (2016) 1–7.
27. Oldham, K. B., and Spanier, J. The fractional calculus. Theory and ap-plications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, Vol. 111. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974.
28. Sweilam, N. H., and Al-Ajami, T. M. Legendre spectral-collocation method for solving some types of fractional optimal control problems. J. Adv. Res., 6(3) (2015) 393–403.
29. Yari, A. Numerical solution for fractional optimal control problems by Hermite polynomials.J. Vib. Control, 27(5-6) (2021) 698–716.
Send comment about this article