[1] Abdi, A. and Hosseini, A. The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations, SIAM J. Sci. Comput. 40 (2018), A1936–A1960.
[2] Berrut, J.P. Rational function for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl. 15 (1988), 1–16.
[3] Berrut, J. P., Hosseini, S. A. and Klein, G. The linear barycentric rational quadrature method for volterra integral equations, SIAM J. Sci. Comput. 36 (2014), A105–A123.
[4] Floater, M.S. and Hormann, K. Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107(2) (2007), 315–331.
[5] Gabriel, J.P., Studer, L.M., Rüegg, D.G. and Schnetzer, M.A. A math-ematical model for the steady activation of a skeletal muscle, SIAM J. Appl. Math. 68 (2008), 869–889.
[6] Klein, G. and Berrut, J.P. Linear barycentric rational quadrature, BIT, 52 (2012), 407–424.
[7] Liu, H., Huang, J., Pan, Y. and Zhang, J. Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations, J. Comput. Appl. Math. 327 (2018), 141–154.
[8] Maleknejad, K., Torabi, P. and Mollapourasl, R. Fixed point method for solving nonlinear quadratic Volterra integral equations, Comput. Math. Appl. 62 (2011), 2555–2566.
[9] Phillips, G.M. Interpolation and approximation by polynomials, CMS Books in Mathematics, Springer, New York, NY, 2003.
[10] Studer, L.M., Ruegg, D.G. and Gabrie, J.P. A model for steady isometric muscle activation, Biol. Cybern. 80 (1999), 339–355.
[11] Torkaman, S., Heydari, M., Loghmani, G. B. and Ganji, D.D. Barycen-tric rational interpolation method for numerical investigation of magne-tohydrodynamics nanofluid flow and heat transfer in nonparallel plates with thermal radiation, Heat Transfer-Asian Research, 49 (2020), 565–590.
[12] Torkaman, S., Heydari, M., Loghmani, G.B. and Wazwaz, A.M. Numer-ical investigation of three-dimensional nanofluid flow with heat and mass transfer on a nonlinearly stretching sheet using the barycentric functions, Int. J. Numer. Methods Heat Fluid Flow. 31 (2020), 783–808.
[13] Torkaman, S., Loghmani, G.B., Heydari, M. and Rashidi, M.M. Novel numerical solutions of nonlinear heat transfer problems using the lin-ear barycentric rational interpolation, Heat Transfer-Asian Research, 48(2019), 1318–1344.
[14] Torkaman, S., Loghmani, G.B., Heydari, M. and Rashidi, M.M. An ef-fective operational matrix method based on barycentric cardinal functions to study nonlinear MHD nanofluid flow and heat transfer, Int. J. Mech. Eng. 5 (2020,) 51–63.
Send comment about this article