[1] Abedian, R. A modified high-order symmetrical WENO scheme for hy-perbolic conservation laws, Int. J. Nonlinear Sci. Numer. Simul. 2022.
[2] Abedian, R. A finite difference Hermite RBF-WENO scheme for hyper-bolic conservation laws, Int. J. Numer. Methods Fluids, 94(6) (2022), 583–607.
[3] Abgrall, R. and Karni, S. Two-layer shallow water system: A relaxation approach, SIAM J. Sci. Comput. 31(3) (2009), 1603–1627.
[4] Arachchige, J.P. and Pettet. G.J. A finite volume method with lineari-sation in time for the solution of advection–reaction–diffusion systems, Appl. Math. Comput. 231 (2014), 445–462.
[5] Castro, M.J., Garcia-Rodriguez, J.A., Gonzalez-Vida, J.M., Macias, J., Pares, C. and Vazquez-Cendon, M.E. Numerical simulation of two-layer shallow water flows through channels with irregular geometry, J. Comput. Phys. 195 (2004), 2002–235.
[6] Chakir, M., Ouazar, D., and Taik, A. Roe scheme for two-layer shallow water equations: Application to the strait of Gibraltar, Math. Model. Nat. Phenom. 4(5) (2009), 114–127.
[7] Chen, S C., and Peng, S.H. Two-dimensional numerical model of two-layer shallow water equations for confluence simulation, Adv. Water Resour. 29 (2006), 1608–1617.
[8] Chiapolino, A. and dan Saurel, R. Models and methods for two-layer shallow water flows, J. Comput. Phys. 371 (2018), 1043–1066.
[9] Cristo, C.D., Greco, M., Iervolino, M., Martino, R. and Vacca, A. A remark of finite volume methods for 2D shallow water equations over irregular bottom topography, J. Hydraul. Res. 59 (2021), 337–344.
[10] Kurganov, A. and Petrova, G. Central-upwind schemes for two-layer shallow water equations, SIAM J. Sci. Comput. 31(3) (2009), 1742–1773.
[11] Leveque, R.A. Finite-volume methods for hyperbolic problems. Cam-bridge University Press, 2002.
[12] Lina, I.R., Habibah, U., and Kusumawinahyu, W.M. Mathematical mod-elling of two layer shallow water flow with incline and uneven bottom, J. Phys. Conf. Ser. 1563 (2020), 0122019.
[13] Muhammad, N. Finite volume method for simulation of flowing fluid via OpenFOAM, Eur. Phys. J. Plus, 136 (10) (2021) 1–22.
[14] Mungkasi, S. Finite volume methods for one-dimensional shallow water equations. Ph.D. Thesis, Australian National University, 2008.
[15] Nikan, O. and Avazzadeh, Z.Coupling of the Crank–Nicolson scheme and localized meshless technique for viscoelastic wave model in fluid flow, J. Comput. Appl. Math. 398 (2021), 113695.
[16] Nikan, O., Avazzadeh, Z. and Rasoulizadeh, M.N. Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory, Nonlinear Dyn. 106 (2021), 783–813.
[17] Pascal, J.P. A model for two-layer moderate Reynolds number flow down an incline, Int. J. Non-Linear Mech. 36(6) (2001), 977–985.
[18] Rasoulizadeh, M.N., Ebadi, M.J., Avazzadeh, Z., and Nikan, O. A high-order symmetrical weighted hybrid ENO-ux limiter scheme for hyperbolic conservation laws, Comput. Phys. Commun. 185 (2014), 106–127.
[19] Rasoulizadeh, M.N., Ebadi, M.J., Avazzadeh, Z. and Nikan, O. An ef-ficient local meshless method for the equal width equation in fluid me-chanics, Eng. Anal. Bound Elem. 131 (2021), 258–268.
[20] Rasoulizadeh, M.N., Nikan, O. and Avazzadeh, Z. The impact of LRBF‑FD on the solutions of the nonlinear regularized long wave equa-tion, Math. Sci. 15 (2021), 365–376.
[21] Remi, A. and Smadar, K. Two-layer shallow water system: A relaxation approach, SIAM J. Sci. Comput. 31(3) (2009), 1603–1627.
[22] Swartenbroekx, C., Zech, Y.V. and Soares-Frazao, S. Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport, Int. J. Numeric. Met, Fluids, 73 (2013), 477–508.
[23] Vallis, G.K. Atmospheric and oceanic fluid dynamics. Cambridge Uni-versity Press, USA, 2006.
[24] Versteeg, H. K. and Malalasekera, W. An introduction to computational fluid dynamics: The finite volume method, Pearson Education Limited, 2007.
[25] Yadav, A., Chakraborty, S. and Usha, R. Steady solution of an inverse problem in gravity-driven shear-thinning film flow: Reconstruction of an uneven bottom substrate, J. Non-Newton. Fluid Mech. 219 (2015), 65–77.
Send comment about this article