[1] Bertram, R., Butte, M.J., Kiemel, T. and Sherman, A. Topological and phenomenologial classification of bursting oscillations, Bull. Math. Biol. 57(3) (1995) 413–439.
[2] Calabrese, R.L., Nadim, F. and Olsen, Ø.H. Heartbeat control in the medicinal leech: a model system for understanding the origin, coordi-nation, and modulation of rhythmic motor patterns, J. Neurobiol. 27(3) (1995) 390–402.
[3] Cymbalyuk, G.S. and Calabrese, R.L. A model of slow plateau-like oscil-lations based upon the fast Na+ current in a window mode, Neurocom-puting 38 (2001) 159–166.
[4] Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., and Calabrese, R.J. Burst-ing in leech heart interneurons: cell-autonomous and network-based mechanisms, J. Neurosci. 22 (24) (2002) 10580–10592. Neurosci. 22, 10580 (2002).
[5] Cymbalyuk, G. and Shilnikov, A. Coexistence of tonic spiking oscilla-tions in a leech neuron model, J. Comput. Neurosci. 18(3) (2005) 255–263.
[6] Gentet, L.J., Stuart G.J., and Clements J.D. Direct measurement of specific membrane capacitance in neurons, Biophys. J. 79 (2000) 314–320.
[7] Grimnes, S. and Martinsen, Ø.G. Alpha-dispersion in human tissue, J. Phys.: Conf. Ser. 224(1) (2010) 012073.
[8] Guckenheimer, J. and Holmes, P.J. Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Vol. 42. Springer Science & Business Media, 2013.
[9] Hill, J., Lu, M., Masino, O. Olsen, R. and Calabrese, L. A model of a segmental oscillator in the leech heartbeat neuronal network, J. Comput. Neuroscience. 10 (2001) 281–302.
[10] Howell, B., Medina, L.E. and Grill, W.M. Effects of frequency-dependent membrane capacitance on neural excitability, J. Neural Eng. 12 (2015) 056015.
[11] Izhikevich, E. Neural excitability, spiking and bursting, Int. J. Bifurc. Chaos 10 (6) (2000) 1171–1266.
[12] Kolomiets, M. L. and Shilnikov, A. L. Poincarè return maps in neu-ral dynamics: three examples, International Conference on Difference Equations and Applications, pp. 45–57. Springer, Cham, 2019.
[13] Liu, W. Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl. 182(1) (1994) 250–256.
[14] Malashchenko, T., Shilnikov, A. and Cymbalyuk, G. Bistability of burst-ing and silence regimes in a model of a leech heart interneuron, Phys. Rev. E 84(4) (2011) 041910.
[15] McIntyre, C.C., Richardson A.G., and Grill, W.M. Modeling the ex-citability of mammalian nerve fibers: influence of after potentials on the recovery cycle J. Neurophysiol. 87 (2002) 995–1006.
[16] McNeal, D. R. Analysis of a model for excitation of myelinated nerve IEEE Trans. Biomed. Eng. 23 (1976) 329–337 .
[17] Monfared, Z. and Dadi, Z. Analysing panel flutter in supersonic flow by Hopf bifurcation, Iranian Journal of Numerical Analysis and Optimiza-tion 4(2) (2014) 1–14.
[18] Opdyke, C.A. and Calabrese, R.L. A persistent sodium current con-tributes to oscillatory activity in heart interneurons of the medicinal leech, J. Comp. Physiol. 175. (1994) 781–789.
[19] Shilnikov, A.L. and Cymbalyuk G. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe, Phys. Rev. Lett. 94 (4) (2005) 048101.
[20] Süli E. Numerical solution of ordinary differential equations, Mathemat-ical Institute, University of Oxford, 2010.
[21] Wanga Q., Duana, Z., Fengc, Z., Chena, G. and Lu, Q. Synchronization transition in gap-junction-coupled leech neurons, Phys. A: Stat. Mech. Appl. 387 (2008) 4404–4410.
Send comment about this article