[1] Alharbi, A. and Fahmy, E.S. ADM-Pade solutions for generalized Burg-ers and Burgers–Huxley systems with two coupled equations, J. Comput. Appl. Math. 233 (2010) 2071–2080.
[2] Arora, S., Dhaliwal, S.S. and Kukreja, V.K. Application of orthogonal collocation on finite elements for solving non-linear boundary value prob-lems, Appl. Math. Comput. 180 (2006) 516–523.
[3] Arora, S., Jain, R. and Kukreja, V.K. Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines, Appl. Numer. Math. 154 (2020) 1–16.
[4] Arora, S. and Kaur, I. An efficient scheme for numerical solution of burgers′ equation using quintic Hermite interpolating polynomials, Arab. J. Math. 5 (2016) 23–34.
[5] Arora, S. and Kaur, I. Applications of quintic Hermite collocation with time discretization to singularly perturbed problems, Appl. Math. Com-put. 316 (2018) 409–421.
[6] Arora, S., Kaur, I., Kumar, H. and Kukreja, V.K. A robust technique of cubic Hermite collocation for solution of two phase nonlinear model, J. King Saud Univ. Eng. Sci. 29 (2017) 159–165.
[7] Asogwa, K., Mebarek-Oudina, F. and Animasaun, I., Comparative in-vestigation of water-based Al2O3 nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative Riga plate sur-face via heat transport. Arab. J. Sci. Eng. (2022) 1–18.
[8] Celik, I. Haar wavelet method for solving generalized Burgers-Huxley equation, Arab J. Math. Sci. 18 (2012) 25–37.
[9] Chabani, I., Mebarek Oudina, F. and Ismail, A.I. MHD flow of a Hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines, 13 (2022) 224.
[10] Djebali, R., Mebarek-Oudina, F. and Choudhari, R. Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Phys. Scr. 96 (2021) 085206.
[11] Farhan, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Shah, Z., Choud-hari, R.V. and Makinde, O.D. Implementation of one step one Hybrid block method on nonlinear equation of the circular sector oscillator. Com-put. Math. Model. 31 (2020) 116–132.
[12] Hall, C. On error bounds for spline interpolation, J. Approx. Theory. 1 (1968) 209–218.
[13] Hammad, D. A. and El-Azab, M. S. 2N order compact finite differ-ence scheme with collocation method for solving the generalized Burger′s-Huxley and Burger′s-Fisher equations, Appl. Math. Comput. 258 (2015) 296–311.
[14] Inan, B. and Bahadir, A. R. Numerical solution of the generalized Burg-ers Huxley equation by implicit exponential finite difference method, J. Appl. Math. Inform. 11 (2015), 57–67.
[15] Ismail, H.N.A., Raslan, K. and Rabboh, A.A.A. Adomain-decomposition method for Burger′s Huxley and Burger′s Fisher equations, Appl. Numer. Math. 159 (2004) 291–301.
[16] Javidi, M. A numerical solution of the generalized Burgers-Huxley equa-tion by spectral collocation method, Appl. Math. Comput. 178 (2006) 338–344.
[17] Kushner, A.G. and Matviychuk, R.I. Finite dimensional dynamics and exact solutions of Burgers-Huxley-equation, Twelfth International Con-ference ”Management of large scale system development”, Moscow, Rus-sia,(2019) 1–3.
[18] Marzougui, S., Mebarek-Oudina, F., Mchirgui, A. and Magherbi, M. Entropy generation and heat transport of Cu-water nanoliquid in porous lid-driven cavity through magnetic field. Int. J. Numer. Methods Heat Fluid Flow, (2021).
[19] Miller, J.J.H., O′Riordan, R.E. and Shishkin, G. I. Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996.
[20] Rathish Kumar, B. V., Vivek, S., Murthy, S.V.S.S.N.V.G.K. and Nigam, M. A numerical study of singularly perturbed generalized Burgers–Huxley equation using three-step Taylor–Galerkin method, Comput. Math. Appl. 62 (2011) 776–786.
[21] Saha Ray, S. and Gupta, A.K. On the solution of Burgers-Huxley and Huxley equation using wavelet collocation method, Comput. Model. Eng. Sci. 91 (2013) 409–424.
[22] Sari, M., Gurarslan, G. and Dag, I. A compact finite difference method for the solution of the generalized Burgers-Fisher equation, Numer. Methods Partial Differ. Equ. 26 (2009) 125–134.
[23] Sari, M., Gurarslan, G. and Zeytinoglu, A. High-order finite difference schemes for numerical solutions of the generalized Burger-Huxley equa-tion, Numer. Methods Partial Differ. Equ. 27 (2011) 1313–1326.
[24] Tersenov, A.S. On the generalized Burgers equation, Nonlinear Differ. Equ. Appl. 17 (2010) 437–452.
[25] Warke, A.S., Ramesh, K., Mebarek-Oudina, F. and Abidi, A. Numerical investigation of nonlinear radiation with Magnetomicropolar Stagnation point flow past a heated stretching sheet. J. Therm. Anal. Calorim. 135 (2021) 533–549.
Send comment about this article