1. Bagley, R.L. and Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures, J. AIAA., 23 (1985), 918–925.
2. Bhrawy, A.H. and Zaky, M.A. Shifted fractional–order Jacobi orthogonal functions: Application to a system of fractional differential equations,Appl. Math. Model. 40 (2016), 832–845.
3. Borhanifar, A. and Sadri, K. A new operational approach for numerical solution of generalized functional integro-differential equations, J. Comput. Appl. Math. 279 (2015), 80–96.
4. Dehghan, M., Hamedi, E. A. and Khosravian-Arab, H. A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials, J.Vib. .Control, 22 (6) (2014), 1547–1559.
5. Doha, E.H., Bhrawy, A.H., and Ezz-Eldien, S.S. A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model. 36 (10) (2012), 4931–4943.
6. Duan, B., Zheng, Z. and Cao, W. Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial value problems, J. Comput. Phys. 319 (2016), 108–128.
7. Engheta, N. On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas and Propagation 44 (1996), 554–566.
8. Eshaghi , J., Adibi, H., and Kazem, K. Solution of nonlinear weakly singular Volterra integral equations using the fractional-order Legendre functions and pseudospectral method, Math. Methods Appl. Sci. 39 (12) (2015), 3411–3425.
9. Esmaeil, S., Shamsi, M. and Luchko, Y. Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials, Comp. Math. Appl. 62 (3) (2011), 918–929.
10. Guo, B.Y. and Wang, L.L. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory,. 128 (2004), 1–41.
11. Kazem, S. An integral operational matrix based on Jacobi polynomials for solving fractional-order differential quations, Appl. Math. Model. . 37 (3) (2013), 1126–1136.
12. Kazem, S., Shaban, M. and Amani Rad, J. Solution of the coupled Burgers equation based on operational matrices of d-dimensional orthogonal functions, Zeitschrift fr Naturforschung A, 67 (2012), 267–274.
13. Kulish, V.V., Lage, J.L. Application of fractional calculus to fluid mechanics, J. Fluids. Eng., 124(3) (2002), 803–806.
14. Magin, R.L. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), 1586–1593.
15. Mainardi, F. Fractional calculus: some basic problems in continuum and statistical mechanics, Fracta. Fracti. Calcu. Continu. Mecha., 378 (1997), 291–348.
16. Meral, F.C., Royston, T.J. and Magin, R. Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul.15 (2010), 939–945.
17. Mokhtary, P., Ghoreishi, F. and Srivastava, H.M. The Muntz–Legendre Tau Method for Fractional Differential Equations, Appl. Math. Model. 40 (2016), 671–684.
18. Rahimkhani, P., Ordokhani, Y. and Babolian, E. Numerical solution of fractional pantograph differential equations by using generalized fractionalorder Bernoulli wavelet, J. Comput. Appl. Math.309 (2017), 493–510.
19. Sadri, K., Amini, A. and Cheng, C. Low cost numerical solution for threedimensional linear and nonlinear integral equations via three-dimensional Jacobi polynomials, J. Comput. Appl. Math. 319 (2017), 493–513.
20. Saeed, U. and Rehman, M. Hermite wavelet method for fractional delay differential equations, J. Difference Equ., doi: 10.1155/2014/359093, (2014), 8 pp.
21. Sedaghat, S., Ordokhani, Y., and Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4815–4830.
22. Szego, G. Orthogonal polynomials, American Mathematical Society. Providence, Rhodes Island, 1939.
23. Tohidi, E., Bhrawy, A.H. and Erfani, K.A. Collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model. 37 (2012), 4283–4294.
24. Yang, Y. and Huang, Y. Spectral-collocation methods for fractional pantograph delay integro-differential equations, Adv. Math. Phys., doi: 10.1155/2013/821327, (2013) 14 pp.
25. Yousefi, S.A. and Lotfi, A. Legendre multiwavelet collocation method for solving the linear fractional time delay systems, Cent. Eur. J. Phys. 11(10) (2013), 1463–1469.
26. Yu, Z.H. Variational iteration method for solving the multi–pantographdelay equation, Phys. Lett. A., 372 (2008) , 6475–6479.
27. Yuzbasi, S. Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Appl. Math. Comput. 219 (2013), 6328–6343.
Send comment about this article