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Abstract

The fractional Lane–Emden model illustrates different phenomena in as-
trophysics and mathematical physics. This paper involves the Vieta–Lucas
(Vt-L) bases to solve types of variable-order (V-O) fractional Lane–Emden
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equation (linear and nonlinear). The operational matrix of the V-O frac-
tional derivative is obtained for the Vt-L polynomials. In the established
approach, these polynomials are applied to transform the main problem
into an algebraic equations system. To indicate the performance and capa-
bility of the scheme, a number of examples are presented for various types
of V-O fractional Lane–Emden equations. Also, for one example, a com-
parison is done between the calculated results by our technique and those
obtained via the Bernoulli polynomials. Overall, this paper introduces a
new methodology for solving V-O fractional Lane–Emden equations using
Vt-L bases. The derived operational matrix and the transformation to an
algebraic equation system offer practical advantages in solving these equa-
tions efficiently. The presented examples and comparative analysis high-
light the effectiveness and validity of the proposed technique, contributing
to the understanding and advancement of fractional Lane–Emden models
in astrophysics and mathematical physics.

AMS subject classifications (2020): 34A08; 65L60; 65N35; 35L10

Keywords: Lane–Emden equation; Vieta–Lucas polynomials; Variable-order
fractional differential equation.

1 Introduction

Due to the helpful usage of fractional calculus in many scientific and engi-
neering fields [7, 12, 25], from the first decade of this century until now, this
issue has been challenging for researchers and will certainly continue in the
coming decades. Finding the explicit solution for these equations is difficult
and sometimes impossible. Therefore, many numerical techniques are ex-
tended for solving fractional differential equations. For example, interested
readers can refer to [3, 17, 13, 22, 36, 35] and references therein.

Variable-order (V-O) operators are a natural generalization of operators
with constant fractional order. In these types of operators, orders can be con-
sidered as a function of time, space, or both. In 1993, the first definition for
this class of equations was provided by Samko and Ross [34]. Many dynamic
procedures may vary by time or place. The fractional order role in these pro-
cedures shows that Vcalculus is the normal prospect for supplying a useful
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mathematical plan to explain complicated dynamical models. For example,
V-O fractional derivatives have been used for the processing of geographical
data in [9], diffusion in [38], signature verification in [40], and viscoelasticity
in [8]. Several mapping effects on the fractional operators in types of cases in
Hölder spaces expanded for the topic of V-O in [32]. Researchers have done
many studies on the numerical approaches for solving the V-O fractional
problems. For example in [24], the V-O diffusion equation is discussed with
the conditionally stable explicit finite difference method. Zhuang et al. [44]
considered conditionally stable explicit and unconditionally stable implicit
methods in the V-O fractional advection-diffusion equation. The scholars of
[13] introduced a meshless moving Kriging interpolation scheme to solve the
two-dimensional V-O fractional mobile/immobile advection-diffusion prob-
lem. The Adams–Bashforth–Moulton predictor-corrector technique was pro-
posed in [39, 26] to simulate V-O fractional differential equations with time
delays. To see other properties and numerical schemes regarding V-O frac-
tional differential equations, see [29] and references therein.

The Lane–Emden equations play a significant role in the fields of engi-
neering sciences and physics. These equations find wide application in ad-
dressing various phenomena across disciplines such as thermodynamics, fluid
mechanics, mathematical physics, and astrophysics. Notable examples in-
clude modeling stellar structures, analyzing isothermal gas spheres, studying
thermionic currents, and investigating the thermal behavior of spherical gas
clouds [10, 5, 11, 6].

Various methods have been employed to tackle Lane–Emden problems
effectively, including the Homotopy technique [41], the B-Spline approach
[4], the modified variational method [37], Lie group analysis [21], the Ado-
mian and modified Adomian decomposition techniques [42, 23], finite element
techniques [18], transform differential procedures [43], Taylor’s series method
[14], the Legendre wavelets method [20], and the rational Bernoulli collocation
approach [28]. For a more in-depth exploration of Lane–Emden equations,
encompassing their variations, historical context, and practical applications,
interested individuals are encouraged to consult the work [1] and its associ-
ated references.

In this study, consider the V-O fractional Lane–Emden model as
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c

0D
ϱ(t)
t ν(t) +

ξ

tϱ(t)−ς(t)

c

0D
ς(t)
t ν(t) + F (t, ν(t)) = g(t), 0 ≤ t ≤ 1, (1)

subject to the initial conditions ν(0) = ν0,

ν′(0) = ν1,
(2)

where 1 < ϱ(t) < 2, 0 < ς(t) < 1. Also, ξ is a positive constant, F (t, ν(t)),
and g(t) are given continuous functions. The approximate solution of the
classical fractional order of this equation has been investigated by Bernoulli
polynomials in [33]. In this work, we use the Vt-L polynomials to solve the
above form of this equation. The Vt-L polynomials were introduced for the
first time in the year 2020 and used to solve fractional advection-dispersion
equations [2]. Also, the uniform convergence and error bound of the Vt-L
polynomials has been checked in [2]. Despite the accuracy of these polyno-
mials in approximating functions, they have not been used in constructing
numerical methods for solving various problems. In [27], a numerical method
was presented with the operational matrix of Vt-L polynomials to solve the
fractional Bagley–Torvik equation, initial value problems, and nonhomoge-
nous multi-order fractional problems. Researchers in [19] used these poly-
nomials to calculate the approximate solution of the multi-Pantograph delay
problems with singularity and compare the computed results with the exact
one. The capability and performance of the numerical scheme established
upon the Vt-L polynomials to solve the coupled nonlinear V-O fractional
Ginzburg-Landau equations [15] encouraged us to use these polynomials to
solve the V-O fractional Lane–Emden problem. For this purpose, we com-
pute the V-O fractional derivative and the classical derivative operational
matrices of the Vt-L polynomials. The solution ν(t) is expanded in terms of
these basis polynomials, and the linear/nonlinear equation is converted to the
linear/ nonlinear algebraic equation system. The capability of the proposed
scheme is obtained through several examples.

Numerical methods based on operational matrices have proven to be
highly effective in solving mathematical problems, particularly those involv-
ing differential and integral equations. Unlike traditional methods that di-
rectly calculate derivatives and integrals, the operational matrix method uti-
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lizes the operational matrices of derivatives and integrals. This approach
offers several advantages, such as reducing CPU time due to the sparsity of
the matrices and the presence of zero elements.

The operational matrix method is a powerful numerical technique for
solving differential equations due to its simplicity, efficiency, accuracy, ver-
satility, flexibility, and numerical stability. However, it is important to be
aware of its limitations, including discretization errors, limited applicability
to complex geometries, computational requirements, convergence issues, and
limited support for discontinuous solutions. By considering these factors,
researchers and practitioners can employ the operational matrix method ef-
fectively and make informed decisions regarding its application in various
scientific and engineering fields.

The outline of the work is as follows: Several characteristics and concepts
about V-O fractional derivative in Caputo form are mentioned in section 2.
The Vt-L polynomials are introduced in section 3. The formulation of the
presented approach is explained in section 4. Several examples of linear and
nonlinear types of the problem under study are examined in section 5. The
conclusion of this work is briefly expressed in section 6.

2 V-O fractional calculus

In this part, we introduce the indispensable relations and definitions of V-O
fractional calculus, which are required in our work.

Definition 1. [30] Let µ and ζ > 0. The generalized Mittag-Leffler function
is as follows:

Eµ,ζ(t) =

∞∑
i=0

ti

Γ(µi+ ζ)
, (3)

where t ∈ C.

Definition 2. [16] For a continuous function θ : R+∪{0} −→ (n̂−1, n̂] with
n̂ ∈ N, the V-O fractional derivative of the function ν(t) in the Caputo form
is determined as
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c

0D
θ(t)
t ν(t) =


1

Γ(n̂− θ(t))

∫ t

0

(t− ρ)n̂−θ(t)−1 d
n̂ν(ρ)

dρn̂
dρ, θ(t) ∈ (n̂− 1, n̂),

dn̂ν(t)

dtn̂
, θ(t) = n̂.

(4)

Lemma 1. Let the assumptions of the above definition be satisfied. Then,
we have

c

0D
θ(t)
t tk =


0, k = 0, 1, . . . , n̂− 1,

Γ(k + 1)

Γ(k + 1− θ(t))
tk−θ(t), k ≥ n̂.

(5)

3 The Vt-L polynomials

This section is dedicated to introduce the Vt-L polynomials and some of their
properties.

Definition 3. [31, 15] The Vt-L polynomials are defined over [0, 1] as

V∗
j (t) =


2, j = 0,
j∑

l=0

(−1)j−l 2
2l+1j(j + l − 1)!

(2l)!(j − l)!
tl, j ≥ 1.

(6)

The orthogonal property of these polynomials is satisfied, which means
that

∫ 1

0

V∗
j (t)V∗

ĵ
(t)ϖ(t)dt =


4π, j = ĵ = 0,

2π, j = ĵ ̸= 0,

0, j ̸= ĵ,

(7)

where ϖ(t) =
1√

t− t2
. Any function ν(t) ∈ L2

ϖ[0, 1] can be expanded with
the Vt-L polynomials as

ν(t) ≃ νN (t) =

N∑
j=0

cjV∗
j (t) ≜ CTΥ(t), (8)

where

C = [ĉ0 ĉ1 · · · ĉN ]T ,

Υ(t) = [V∗
0 (t) V∗

1 (t) · · · V∗
N (t)]T ,

(9)
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and
ĉj =

1

λj

∫ 1

0

ν(t)V∗
j (t)ϖ(t)dt, j = 0, 1, . . . , N, (10)

with

λj =

∫ 1

0

(
V∗
j (t)

)2

ϖ(t)dt =

 4π, j = 0,

2π, j = 1, 2, . . . , N.
(11)

The following theorem demonstrates the uniform convergence of the Vt-L
polynomials and its error bound for approximating the function ν(t).

Theorem 1. [2] Assume that ν(t) ∈ L2
ϖ with ϖ(t) and |ν′′(t)| < K such

that K is a positive constant. Then, νN (t) −→ ν(t) as N −→ ∞. Moreover,
the coefficients in relation (8) satisfy

|ĉj | ≤
K

4j(j2 − 1)
, j > 2. (12)

Also, the error bound will be obtained as

∥ν(t)− νN (t)∥L2
ϖ
<

K

12N
3
2

. (13)

In the next theorem, the ordinary derivative matrix and the V-O fractional
of the Vt-L polynomials are derived.

Theorem 2. The differentiation of the vector Υ(t) in (9) satisfies the fol-
lowing relation

dΥ(t)

dt
≃ D(1)Υ(t), (14)

in which D(1) is an (N + 1) × (N + 1) matrix which its entries is computed
by

[D(1)]ij =

 0, i = 1,

φij , i = 2, 3, . . . , N + 1,
(15)

in which
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φij =



1

4π

i−1∑
l=1

(−1)i−l−1 2
2(l+1)(i− 1)(i+ l − 2)!l

(2l)!(i− l − 1)!

√
πΓ(l − 1

2
)

Γ(l)
,

j = 1,

1

2π

i−1∑
l=1

j−1∑
s=0

(−1)i+j−l−s−2

(
22(l+s+1)(i− 1)(j − 1)(i+ l − 2)!(j + s− 2)!l

(2l)!(2s)!(i− l − 1)!(j − s− 1)!

√
πΓ(l + s− 1

2
)

Γ(l + s)

)
,

j = 2, 3, . . . , N + 1.

(16)

Proof. For î = 0, the proof is obvious. For î = 1, . . . , N from (6), we get

V∗
î
(t)

dt
=

î∑
l=1

(−1)î−l 2
2l+1î(̂i+ l − 1)!l

(2l)!(̂i− l)!
tl−1. (17)

Approximating the above relation with the Vt-L polynomials results in

V∗
î
(t)

dt
≃

N∑
ĵ=0

D(1)

îĵ
V∗
ĵ
(t), î = 1, 2, . . . , N, (18)

in which, for ĵ = 0, one obtains

D(1)
10 =

1

λ0

∫ 1

0

V∗
î
(t)

dt
V∗
0 (t)ϖ(t)dt

=
1

4π

î∑
l=1

(−1)i−l 2
2l+1î(̂i+ l − 1)!l

(2l)!(̂i− l)!

∫ 1

0

2tl−1

√
t− t2

dt

=
1

4π

î∑
l=1

(−1)î−l 2
2(l+1)î(̂i+ l − 1)!l

(2l)!(̂i− l)!

√
πΓ(l − 1

2 )

Γ(l)
,

(19)

and for ĵ = 1, 2, . . . , N ,

D(1)

îĵ
=

1

λj

∫ 1

0

V∗
î
(t)

dt
V∗
ĵ
(t)ϖ(t)dt

=
1

2π

î∑
l=1

ĵ∑
s=0

(
(−1)î+ĵ−l−s 2

2(l+s+1) îĵ(̂i+ l − 1)!(ĵ + s− 1)!l

(2l)!(2s)!(̂i− l)!(ĵ − s)!

)∫ 1

0

tl+s−1

√
t− t2

dt

=
1

2π

î∑
l=1

ĵ∑
s=0

(
(−1)î+ĵ−l−s 2

2(l+s+1) îĵ(̂i+ l − 1)!(ĵ + s− 1)!l

(2l)!(2s)!(̂i− l)!(ĵ − s)!

)√
πΓ(l + s− 1

2
)

Γ(k + s)
.

(20)

Therefore, by replacing î = i− 1 and ĵ = j − 1, the proof is completed.
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For example, for N = 5, one can get

D(1) =



0 0 0 0 0 0

2 0 0 0 0 0

0 8 0 0 0 0

6 0 12 0 0 0

0 16 0 16 0 0

10 0 20 0 20 0


.

Lemma 2. The vector Υ(t) in (9) can be rewritten by

Υ(t) = RẊ, (21)

where
Ẋ = [1 t t2 · · · tn]T , (22)

and R is an (n+ 1) square upper triangular matrix and

[R]ij =

 2, i = j = 1,

uij , j ≤ i,
(23)

in which
uij =

(−1)i−j22j+1i(i+ j − 1)!

(2j)!(i− j)!
. (24)

Proof. By considering (6) and (9), one obtains

Υ(t) = [V∗
0 (t) V∗

1 (t) V∗
2 (t) · · · V∗

N (t)]T

= [2 u10 + u11t u20 + u21t+ u22t
2 · · · un0 + un1t+ . . .+ unnt

n]T

=



2 0 0 0 · · · 0

u10 u11 0 0 · · · 0

u20 u21 u22 0 · · · 0
...

...
...

...
...

...

un0 un1 un2 un3 · · · unn





1

t

t2

...

tn


,

(25)

in which uij is defined in (24).
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Lemma 3. Let Ẋ be the vector defined in (22). Also, let q − 1 < σ(t) < q
be a continuous function given in [0, 1]. Then, the V-O fractional derivative
of Ẋ is obtained as

c

0D
σ(t)
t Ẋ = Qσ(t)Ẋ, (26)

where Qσ(t) is the square (n+ 1)-matrix whose first q columns are zero and

Qσ(t) =



0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...
...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

0 0 · · ·
Γ(q + 1)

Γ(q + 1− σ(t))
t−ξ 0 · · · 0

0 0 · · · 0
Γ(q + 2)

Γ(q + 2− σ(t))
t−ξ · · · 0

...
...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · ·
Γ(n+ 1)

Γ(n+ 1− σ(t))
t−ξ



. (27)

Proof. According to Lemma 1, the proof is obvious.

Now, we compute the operational matrix of V-O fractional derivative of
the Vt-L polynomials.

Theorem 3. Let Υ(t) be the Vt-L polynomials vector defined in (9) and
let σ(t) be a function introduced in Lemma 3. Then, the V-O fractional
derivative of order σ(t) is computed as follows

c

0D
σ(t)
t Υ(t) = Dσ(t)Υ(t), (28)

where Dσ(t) = RQσ(t)R−1 is the matrix of σ(t) V-O fractional derivative for
the Vt-L polynomials.

Proof. Using Lemmas 2 and 3, one can get

c

0D
σ(t)
t Υ(t) =

c

0D
σ(t)
t

(
RẊ

)
= R

c

0D
σ(t)
t Ẋ

= RQσ(t)Ẋ =
(
RQσ(t)R−1

)
Υ(t) = Dσ(t)Υ(t), (29)

and the proof is performed.
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4 Description of the scheme

In this part, we state a spectral method via the Vt-L polynomials for the
approximate solution of the V-O fractional Lane–Emden equation expressed
in (1). For this purpose, assume that

ν(t) ≃ νN (t) =

N∑
j=0

cjV∗
j (t) ≜ CTΥ(t), (30)

where C is a vector with unknown elements and Υ(t) is defined in relation
(9). Using Theorem 3 implies that

c

0D
ϱ(t)
t ν(t) ≃ CTDϱ(t)Υ(t), (31)

and
c

0D
ς(t)
t ν(t) ≃ CTDς(t)Υ(t). (32)

Substituting (30)–(32) into (1) results in

CTDϱ(t)Υ(t) +
µ

tϱ(t)−ς(t)
CTDς(t)Υ(t) + F (t,CTΥ(t))− g(t) ≜ R(t). (33)

Moreover, from (2), (30), and Theorem 2, we getΛ0 ≜ CTΥ(0)− ν0 ≃ 0,

Λ1 ≜ CTD(1)Υ(0)− ν1 ≃ 0.
(34)

Eventually, one obtains a numerical solution for (1) by solving relation (33)

with initial conditions (34) in the collocation points t̄i =
2̄i− 1

2(N + 1)
with

ī = 1, 2, . . . , N − 1, and through substituting in (30). The program of the
proposed numerical method in pseudo-code format is designed in Algorithm
1. It is crucial to emphasize that the solution to the system of equations (33)
and (34) is achieved by utilizing the “fsolve” command within the Maple 18
software.
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Algorithm 1: The proposed method algorithm
Inputs: N > 0; ς(t) ∈ (0, 1]; ϱ(t) ∈ (1, 2]; g; ν0; ν1.
Step 1: Define the functions V∗

j (t) via (6).
Step 2: Construct the vector Υ(t) and the matrix D(1) by (9) and
Theorem 2, respectively.

Step 3: Make of the matrices Dϱ(t) and Dς(t) using Theorem (3).
Step 4: Construct the vector C in (30).
Step 5: Define R(t), Λ0, and Λ1 in (33) and (34).
Step 6: Extract the algebraic system by the collocation points xi.
Step 7: Solve the obtained system and compute the vector C.
Outputs: The numerical solution νN (t).

5 Numerical results

Here, four numerical examples are proposed to examine the accuracy of pre-
sented technique. To do this, we use the maximum absolute error as

L∞ = max
0≤x≤1

|ν(t)− νN (t)|, (35)

where ν(t) and νN (t) are the analytical and numerical solution with Vt-L
polynomials, respectively. Also, the calculations are carried out by Maple 17

with 25 digits.

Example 1. For the first example, consider the problem

c

0D
ϱ(t)
t ν(t) +

1

tϱ(t)−ς(t)

c

0D
ς(t)
t ν(t) + eν(t) = g(t), (36)

where

g(t) = 2t2−ϱ(t)

(
Γ(3− ϱ(t)) + Γ(3− ς(t))

Γ(3− ς(t))Γ(3− ϱ(t))

)
+

t1−ϱ(t)

Γ(2− ς(t))
+ et

2+t, (37)

subject to the initial conditions ν(0) = ν′(0) = 0. The analytic solution
in the classical form of this problem is ν(t) = t2 + t. We implemented the
presented approach with N = 2 for the approximate solution of this model
for ϱ(t) = 3

2
and ς(t) =

3

4
. So, the approximate solution is derived as follows:
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ν2(t) =1× 10−25 + 0.9999999999999999999999996t

+ 0.9999999999999999999999994t2. (38)

Therefore, the numerical solution is equal to the analytical. While, the max-
imum error reported in [33] by the Bernoulli polynomials with N = 6 is
1.02487E − 13. This means that the presented scheme is more efficient and
superior with respect to the method of [33] for solving this example.

Example 2. Suppose the Lane–Emden equation in the form

c

0D
ϱ(t)
t ν(t) +

2

tϱ(t)−ς(t)

c

0D
ς(t)
t ν(t)− (ν(t))2 = g(t), (39)

where

g(t) = t1−ϱ(t)
(

E2,2−ϱ(t)(−t2)− 1

Γ(2− ϱ(t))

)
+2t1−ϱ(t)E2,2−ς(t)(−t2)− sin(t)2,

(40)
in which, we apply the first 20 terms of the Mittag-Leffler series in our com-
putational. The approximation also used in what follows in this paper. The
exact solution is ν(t) = sin(t). So, ν(0) = 0 and ν′(0) = 1 are the ini-
tial conditions. We apply the proposed technique to compute the numeri-
cal solution for this example with different values of N for three selections
ς1(t) = 0.8 − 0.1 sin(t), ς2(t) = 0.8 − 0.3 sin(t) and ς3(t) = 0.8 − 0.5 sin(t).
Also, three selections ϱ1(t) = 1.8− 0.35 exp(−t2), ϱ2(t) = 1.8− 0.55 exp(−t2)

and ϱ3(t) = 1.8− 0.75 exp(−t2) are used.

Table 1: The L∞ errors in Example 2 with different values of N .

ϱ1(t) ϱ2(t) ϱ3(t)

N ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t)

5 4.7624E − 05 4.7416E − 05 4.7158E − 05 5.0958E − 05 5.0910E − 05 5.0768E − 05 5.3846E − 05 5.4017E − 05 5.4052E − 05

7 1.7751E − 07 1.7600E − 07 1.7447E − 07 1.9490E − 07 1.9388E − 07 1.9257E − 07 2.1095E − 07 2.1087E − 07 2.1074E − 07

9 3.7149E − 10 3.6748E − 10 3.6374E − 10 4.1514E − 10 4.1169E − 10 4.0797E − 10 4.5710E − 10 4.5546E − 10 4.5266E − 10

11 4.9828E − 13 4.9226E − 13 4.8696E − 13 5.6396E − 13 5.5812E − 13 5.5235E − 13 6.2898E − 13 6.2516E − 13 6.2014E − 13

13 4.6498E − 16 4.5905E − 16 4.5403E − 16 5.3139E − 16 5.2516E − 16 5.1934E − 16 5.9857E − 16 5.9382E − 16 5.8832E − 16

Table 1 reports the obtained results for this example. Column one of this
table is the number of the Vt-L polynomials (N), which increases from top
to bottom and other columns are L∞ errors between the present method and
the exact solution for different values of ς(t) and ϱ(t). With increases in N ,
one can observe that the error decreases, which indicates the capability of the
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present technique. The results of this table show that our scheme is reliable
for different values of V-Os.
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Figure 1: The absolute error of ν(t) in Example 2 for ς3(t) and ϱ3(t) with two values of
N , (a) N = 9, (b) N = 13, and (c) the exact solution and numerical solution ν11(t).

Figure 1 (a) and (b) demonstrates the absolute errors for ς3(t) and ϱ3(t)

for different selections of N . Also, Figure 1(c) illustrates the numerical and
exact solutions for this problem.

From the results of Table 1 and Figure 1, one can observe that the pre-
sented approach is very reliable and capable of calculating the approximate
solution of this problem.

Example 3. In this example, we consider the Lane–Emden model as

c

0D
ϱ(t)
t ν(t) +

4

tϱ(t)−ς(t)

c

0D
ς(t)
t ν(t) + t2ν(t) = g(t), (41)

subject to the following initial conditions
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ν′(0) = −1,

with

g(t) =t−ϱ(t)
(

E1,1−ϱ(t)(−t)− 1

Γ(1− ϱ(t))
+

t

Γ(2− ϱ(t))

)
+ 4t−ϱ(t)

(
E1,1−ς(t)(−t)− 1

Γ(1− ς(t))

)
+ t2 exp(−t).

(42)

The analytical solution is ν(t) = exp(−t). Similar to the previous example,
we use the following different selections for the V-Os ς(t) and ϱ(t)

ς1(t) = 0.35 + 0.2 exp(−t), ς2(t) = 0.35 + 0.4 exp(−t),

ς3(t) = 0.35 + 0.6 exp(−t), ϱ1(t) = 1.8− 0.25 cos(t),

ϱ2(t) = 1.8− 0.45 cos(t), ϱ3(t) = 1.8− 0.65 cos(t),

to test our method for approximating the solution of this example.

Table 2: The L∞ errors in Example 3 with different values of N .

ϱ1(t) ϱ2(t) ϱ3(t)

N ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t)

6 5.6134E − 06 5.6705E − 06 5.6751E − 06 6.4335E − 06 6.4244E − 06 6.3466E − 06 7.2120E − 06 7.1085E − 06 6.9261E − 06

8 1.4038E − 08 1.4277E − 08 1.4400E − 08 1.6502E − 08 1.6607E − 08 1.6531E − 08 1.9013E − 08 1.8871E − 08 1.8493E − 08

10 2.1893E − 11 2.2348E − 11 2.2649E − 11 2.6141E − 11 2.6443E − 11 2.6469E − 11 3.0683E − 11 3.0620E − 11 3.0157E − 11

12 2.3300E − 14 2.3834E − 14 2.4229E − 14 2.8115E − 14 2.8541E − 14 2.8684E − 14 3.3442E − 14 3.3513E − 14 3.3141E − 14

14 1.7999E − 17 1.8437E − 17 1.8778E − 17 2.1870E − 17 2.2270E − 17 2.2457E − 17 2.6282E − 17 2.6419E − 17 2.6210E − 17

The L∞ errors between the approximate and exact solution are provided
in Table 2. The first column of this table is the various values of N from 6 to
14. The next columns are the errors for different selections of ς(t) and ϱ(t).
It is evident that augmenting the polynomial bases leads to a reduction in
error for each ς(t) and ϱ(t) value. The convergence of the outcomes presented
in this table is readily discernible.

The diagram of the numerical solution and its absolute error is depicted
in Figure 2 (a) and (b). Also, the numerical and exact solutions for ς3(t) and
ϱ3(t) are depicted in Figure 2 (c).

Table 2 and Figure 2 confirm that the efficiency of the obtained numerical
results is improved by increasing the values of N . These results show the
capability of the presented technique for solving this example.
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Figure 2: The absolute error of ν(t) in Example 3 for ς3(t) and ϱ3(t) with two values
of N (a) N = 10, (b) N = 14, and (c) the analytical solution and numerical solutions
ν12(t).

Example 4. In the end, we examine the following Lane–Emden model:
c

0D
ϱ(t)
t ν(t) +

1

tϱ(t)−ς(t)

c

0D
ς(t)
t ν(t)− 1

t
ν(t) = g(t),

ν(0) = 0, ν′(0) = 1,
(43)

where

g(t) = t1−ϱ(t)
( ∞∑

i=1

(2i+ 1)(−t2)i

Γ(2i+ 2− ϱ(t))
+

∞∑
i=0

(2i+ 1)(−t2)i

Γ(2i+ 2− ς(t))

)
+ cos(t). (44)

The analytic solution is ν(t) = t cos(t) for any 0 < ς(t) < 1 and 1 < ϱ(t) < 2.
We apply the proposed approach for this problem with some different values
of ς(t) and ϱ(t) as follows:

ς1(t) = 0.8− 0.15 sin(t) cos(t), ς2(t) = 0.8− 0.35 sin(t) cos(t),
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ς3(t) = 0.8− 0.55 sin(t) cos(t), (45)

and

ϱ1(t) = 0.55 +
1

1 + t2
, ϱ2(t) = 0.75 +

1

1 + t2
, ϱ3(t) = 0.95 +

1

1 + t2
.

(46)
We report the computed numerical results of the proposed scheme for some
values of N in Table 3. The results obtained are compiled in Table 3, demon-
strating that the outcomes improve as the values of N increase. These find-
ings affirm that the numerical solutions converge toward the analytic solution.
Figure 3 (a) and (b) depict the absolute errors for this problem with two val-
ues of N . Moreover, the analytical and approximate solutions are depicted
in Figure 3 (c). The results of Figure 3 and Table 3 show that the presented
technique accurately calculates the approximate solution for this example.

Table 3: The L∞ errors in Example 4 with different values of N .

ϱ1(t) ϱ2(t) ϱ3(t)

N ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t) ς1(t) ς2(t) ς3(t)

5 3.3251E − 04 3.3175E − 04 3.3075E − 04 3.0269E − 04 3.0145E − 04 3.0018E − 04 2.7125E − 04 2.6994E − 04 2.6870E − 04

7 1.6665E − 06 1.6599E − 06 1.6520E − 06 1.4679E − 06 1.4597E − 06 1.4517E − 06 1.2746E − 06 1.2676E − 06 1.2613E − 06

9 4.4376E − 09 4.4146E − 09 4.3884E − 09 3.8173E − 09 3.7928E − 09 3.7698E − 09 3.2440E − 09 3.2257E − 09 3.2098E − 09

11 7.2818E − 12 7.2374E − 12 7.1886E − 12 6.1525E − 12 6.1100E − 12 6.0712E − 12 5.1463E − 12 5.1175E − 12 5.0931E − 12

13 8.0775E − 15 8.0227E − 15 7.9640E − 15 6.7287E − 15 6.6802E − 15 6.6370E − 15 5.5596E − 15 5.5289E − 15 5.5036E − 15

6 Conclusion

The V-O fractional in the Caputo form was used to define the V-O fractional
Lane–Emden equation. So, the novelty of the article is the introduction of a
novel equation type, which expands the existing knowledge base. The Vt-L
polynomials were applied to solve this problem in linear and nonlinear cases.
The presented method was based on these polynomials, under which the prob-
lem was transformed into an algebraic system of equations. Four examples
were considered to show the capability of the obtained results, and they were
compared to their analytical solution and the ones obtained by Bernoulli
polynomials solutions in the first example. Through this comparison, the
advantages and strengths of the constructed method were highlighted, show-
casing its superior performance in terms of accuracy. The outcome confirmed
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Figure 3: The absolute error of ν(t) in Example 4 for ς3(t) and ϱ3(t) with two values of
N (a) N = 9, (b) N = 13, and (c) the exact solution and numerical solution ν11(t).

the efficiency and performance of the proposed approach to solve the V-O
fractional Lane–Emden equation. Given the notable precision of Vt-L poly-
nomials in numerically solving the V-O fractional Lane–Emden equation,
future research should focus on several areas: extending the application of
this derivative to various other equations and integrating the operator matrix
method with other numerical methodologies.
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