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Abstract
The crocodiles have a good strategy for hunting the fishes in nature. These
creatures are divided into two groups of chasers and ambushers when hunt-
ing. The chasers direct prey toward shallow water with a powerful splash
of its tail without catching them, and the ambushers wait in the shallow
and try to snatch the fishes. Such behavior inspires the development of a
new population-based optimization algorithm called the crocodile hunting
strategy (CHS). In order to verify the performance of the CHS, several
classical benchmark functions and four constrained engineering design op-
timization problems are used. In the classical benchmark function, the
comparisons are performed using ant colony optimization, differential evo-
lution, genetic algorithm, and particle swarm optimization. Constrained
engineering design problems are compared with firefly algorithm, harmony
search, shuffled frog-leaping algorithm, and teaching-learning-based opti-
mization. The results of the comparison show that different operators de-
signed in the CHS algorithm lead to fast algorithm convergence and show
better results compared to other algorithms.

AMS subject classifications (2020): 45D05; 42C10; 65G99.

Keywords: Crocodile hunting strategy; Optimization algorithms; Numer-
ical optimization; Classical benchmark functions; Constrained engineering
design problem.

1 Introduction

Optimization is an art that finds the best solution among the set of solu-
tions, and the optimization techniques are tools that converge to the optimal
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solutions by searching the solution space. Finding the best solution to math-
ematical problems has been a challenge for researchers, especially in compli-
cated problems in the field of engineering. Therefore, convergence to the best
solution in the least time with high accuracy has always been interesting to
researchers in the field of optimization. Among the optimization tools, meta-
heuristic algorithms are widely being used for a large number of real-world
engineering problems due to their acceptable accuracy and low time con-
sumption. Their popularity derives from the following aspects. Firstly, all
of these optimization techniques have some fundamental theories and math-
ematical models proven to be reasonable, which come from the real world
and are inspired by all kinds of physical phenomena or biological behaviours
[26, 7]. Secondly, metaheuristics are usually able to solve NP-hard problems
with a high number of decision variables. They are very flexible and versatile
since one can change the structures and parameters of algorithms to obtain
better solutions. Thirdly, metaheuristic algorithms can effectively escape lo-
cal optima, which is very valuable for multimodal engineering problems that
have many local optima in their structures. In addition, their variants can be
developed by absorbing the advantages of other algorithms to improve the ac-
curacy of solutions in a reasonable time. Most metaheuristic algorithms can
solve different types of problems. Some of them are inherently powerful be-
cause of efficient operators and other types of them have been well-hybridized
by the classical algorithms [35]. These problems are divided into various cat-
egories, which are included constrained and unconstrained in terms of prob-
lem structure, discrete and continuous in terms of solutions, and single or
multiobjective in terms of objective function [27]. Generally, metaheuristics
are divided into two categories such as single-solution-based and population-
based algorithms. In single-solution-based algorithms, the searching process
starts with one candidate solution, whereas in population-based algorithms,
the optimization process performs using a set of solutions (i.e., population).
Population-based metaheuristics have advantages over single-solution. These
are as follows:

1. The searching process starts with several random solutions as the initial
population.

2. population-based metaheuristics can share the information with each
other around the search space that, most of the time, leads to escape
from local optimal.

3. The exploration capability of population-based metaheuristics has had
better than single-solution-based techniques.

In a general view, population-based metaheuristics are classified into
seven categories, including biology-based algorithms, physics-based algo-
rithms, social-based algorithms, chemistry-based algorithms, math-based al-
gorithms, sport-based algorithms, and music-based algorithms [1]. Biology-
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based algorithms are divided into three categories of evolution-inspired al-
gorithms, swarm intelligence algorithms, and artificial immune systems [21].
The evolution-inspired algorithm is a generic population-based metaheuristic
that is inspired by biological evolution that includes crossover, mutation, and
selection. The second category is swarm-intelligence-based algorithms. These
algorithms are based on the interaction of swarm with each other. Swarm-
based algorithms are easier to implement than evolutionary-based algorithms
due to including a less number of operators (i.e., selection, crossover, muta-
tion). Apart from this, there are some advantages of swarm-based algorithms,
which are as follows:

Swarm-based algorithms use the flow of information among solutions dur-
ing iterations, whereas evolutionary-based algorithms do not use the infor-
mation of the previous generations.

Swarm-based algorithms have few input parameters as compared to evo-
lutionary techniques.

Swarm-based algorithms utilize less memory space for reaching the best
optimal solutions [3, 36].

The artificial immune systems algorithm was introduced in [11]. These
algorithms mimic the principle of the biological immune system, including the
negative selection algorithm, clonal selection algorithm, the immune network
model, and danger theory.

Solving the test functions has been used for comparing metaheuristics.
Test functions include classical test functions, constrained engineering de-
sign problems, and CEC functions. Classical test functions have been solved
in several dimensions using metaheuristics that are the most practical and
simple type of test function. Constrained engineering design problems are
real-world engineering problems that are the proper criterion for compar-
ing metaheuristics. CEC test functions are classified into complicated test
functions that have always been a challenge to metaheuristics.

In the remainder of this study, in Section 2, the literature review will be
explained. The concepts and operators of crocodile hunting strategy (CHS)
are explained in Section 3. Then in Section 4, the CHS is investigated in
various aspects. In that section, the classical benchmark functions and con-
strained engineering design problems are solved using the CHS algorithm and
compared with other well-known metaheuristics. Finally, in Section 5, the
conclusion and discussion will be presented.

2 Literature review

Swarm intelligence of nature-inspired algorithms includes intensive tech-
niques that mimic the social behavior of groups of animals. The power of
swarm intelligence algorithms was appeared by Kennedy and Eberhart by
developing the particle swarm optimization (PSO) algorithm [24]. The main
idea of the PSO algorithm is inspired by the social behavior of the bird pop-
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ulation. Ant colony optimization (ACO) [13] is inspired by the collective
behavior of the ants, namely finding the shortest path from nest to food
sources. Termite algorithm [29] is based on the behavior of termites. The
shuffled fog-leaping algorithm [16] stems from the search for food by the frog
group. Monkey search simulates a monkey that climbs trees and looks for
food [34]. Cuckoo search [42] simulates the forced child parasitic behavior
in combination with the levy flying behavior of some birds and fruit flies.
The main idea of the firefly algorithm (FA) [41] is inspired by the optical
connection between fireflies. Migrating birds optimization [14] simulates the
process of the social evolution of birds. The fruit fly optimization algorithm
[37] is inspired by the foraging behavior of fruit flies. Artificial bee colony
[2] simulates the strategy of bees to find food from the nest to source food.
Dolphin echolocation (DE) [23] is based on the behavior of dolphins in hunt-
ing, in which the dolphin finds its prey using the distance between its click
and prey. The main idea of the bat algorithm [43] is based on the distance
between the reflection of the bat’s sound to source food. In social spider
optimization [10], the spider receives and analyzes vibrations published on
the web to determine the potential direction of a food source. Grey wolf
optimizer [18, 33] is a nature-inspired metaheuristic algorithm that simulates
the behavior of gray wolfs and the hierarchy of leadership in their hunting.
Bird mating optimizer [4] is inspired by the mating strategies of bird species
during the mating season. The tree-seed algorithm [25] is based on the rela-
tion between trees and their seeds. Moth-flame optimization [31] simulates
the spiral motion of butterflies around the flame. Whale optimization algo-
rithm [32] simulates the bubble net hunting method that is performed from
humpback whales. Crow search algorithm [5] is modeled based on finding
the food of other birds and stealing it by crows. The grasshopper optimiza-
tion algorithm [40] is a nature-inspired metaheuristic algorithm that mimics
the movement of Grasshoppers groups to find food sources. Queuing search
algorithm [45] is inspired by human activities in queues. Pathfinder algo-
rithm [44] is modeled by the collective movement of the animal group and
mimics the leadership hierarchy of swarms to find the best food area or prey.
The main inspiration of Harris hawks optimization [19] is the cooperative
behavior and chasing style of Harris’ hawks in nature called surprise pounce.
The squirrel search algorithm [20] imitates the dynamic foraging behavior
of southern flying squirrels and their efficient way of locomotion known as
gliding. Marine predators algorithm [17] is inspired by widespread foraging
strategies, namely Lévy and Brownian of predators in the ocean.

In this study, the new algorithm called CHS (crocodile optimization al-
gorithm) is investigated using two kinds of benchmark functions. This algo-
rithm was first proposed by Balavand [6] to find the optimum binary solution
of a feature clustering method. The CHS is based on the swarm intelligence
of crocodiles in hunting that simulates the behavior of crocodiles in the hunt-
ing of fishes— dividing crocodiles into different groups and creating the right
strategy while hunting is the main idea of this algorithm. These creatures
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are divided into two groups when they are hunting fish. These groups include
the chasers and the ambushers. These groups try to direct the fish to the
attacking area by using the information flow and proper cooperation. After
arriving prey in the attacking area, all members of the groups attack the fish
and catch them. The details of how to encircle and attack by two groups will
be explained in the next sections.

3 Crocodile optimization algorithm (CHS)

In this section, the optimization algorithm called CHS optimization algorithm
is investigated, which was first used as one of the steps of feature clustering
in [6]. The CHS is placed in the population-based algorithm that can solve
optimization problems using swarm intelligence of crocodiles in hunting. Like
other algorithms in this field, the CHS algorithm with exchanging information
and creating an information flow through the collaboration of the members,
converges to the optimum solution. This algorithm is based on the behavior
of crocodiles that simulates the hunting strategy of crocodiles. Dinets [12]
divided crocodiles into two kinds of chasers and ambushers when hunting.
The chasers, which are bigger than other crocodiles, follow and chase fishes
toward the shore with a powerful splash of their tail without catching them.
Ambushers, which are smaller and more agile, wait in the shallow and try
to snatch the fish. According to [12], crocodiles have a complicated strategy
to snatch prey. According to the bottom section of Figure 1, the ambushers
swim in a circular pattern around prey and take turns cutting through the
center of the gradually shrinking circle, snatching the prey. According to the
top section of Figure 1, chasers direct prey toward ambusher and attacking
area [12]. In the following, the behaviors of the two groups will be simulated
in mathematical equations.

3.1 Initializing

Like other metaheuristic algorithms, before entering the main phases, the
initializing phase is done. In the initializing phase, several initial solutions
are randomly generated. Indeed, these randomized solutions constitute the
initial population of crocodiles. These solutions are generated with uniform
random distribution between the lower and upper bounds. These solutions
are generated according to the following equation:

x = LB + r × (UB − LB) . (1)

After determining initial parameters such as the number of population, the
number of max iterations, the lower bound of variables, and the upper bounds
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of variables, random solutions (x) are generated based on (2), where LB and
UB are lower and upper bounds of the problem, respectively. Also, r is a
uniform random variable that is generated between zero and one. Then these
solutions are evaluated based on the objective function. In fact, in operators
of CHS, the solutions are evaluated based on the objective function. If a
better solution is found, then it is replaced instead of the best solution. The
better solution has the minimum objective function value, which is known as
the best solution (xprey).

Figure 1: Crocodiles hunting strategy

3.2 Chasing the prey

In this section, the behavior of the chasers is simulated. As mentioned be-
fore, the population is divided into two sections. Hence, each section makes
up 50 percent of the population. The group of chasers includes the first 50
percent of the solutions. Accordingly, the second part of 50 percent of the
population includes ambushers. These two groups are randomly divided into
two groups of chasers and ambushers. The idea behind simulating the be-
havior of chasers is based on the distance between prey and crocodiles that
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simulates the behavior of chasers. As previously mentioned, the chasers are
another group of hunters that follow the prey without catching it and direct
the prey to the shore and shallow area. The following equations are proposed
to simulate this behavior:

di,t =
∣∣∣xt

prey − xi,t
chaser

∣∣∣ , for all i, (2)

{
xi,t+1
chaser =

(
xi,t
chaser − β.d

)
for all i ( ln(it)

ln(maxit) × r) ≥ 0.5, (a)

xi,t+1
chaser = |β − (β.d) | for all i ( ln(it)

ln(maxit) × r) < 0.5. (b)
(3)

Here xt
prey denotes the prey position at iteration t and xi,t

chaser indicates the
position of the chaser ith at iteration t. The coefficient β has a uniform dis-
tribution that changes between [−3, 3]. This r is a random number between
zero and one. Also, it is the global iteration number and i is local iteration
number in inner loops. These intervals have been obtained experimentally
after successive iterations of the algorithm. According to (3), d is the distance
between the prey and ith chaser. According to (3), two states occur: First,
if it

maxit × r ≥ 0.5, then (3)(a) is implemented, which means that each chaser
in the first group moved toward the prey with a positive coefficient, and if

it
maxit × r < 0.5, then a random search is done. In brief, (3) shows that by an
intelligent approach, in the initial iterations, (3)(b) is more implemented, and
a random search is done. In the last iterations, (3)(a) is more implemented,
and the chasers close to prey by random approach.

3.3 Attacking to prey

The final position of the prey is where the ambushers are waiting to catch the
prey. Indeed, the ambushers camouflage in the final position and the chasers
try to direct the prey to this place or the attacking area. In order to simulate
the attacking phase, it is assumed that attackers are forced to update their
position according to the following equations:

di,t =
∣∣∣xt

prey − xi,t
ambusher

∣∣∣ , for all i, (4)

A =
apc+ apa+ xprey

3
, (5){

xi,t+1
ambusher =

(
d.cos (2rπ) + xt

prey

)
, for all i (p) ≥ 0.5, (a)

xi,t+1
ambusher =

(
xi,t
ambusher − β(A− xi,t

ambusher)
)
, for all i (p) < 0.5, (b)

(6)
in which p = ln(it)

ln(maxit) × r Here xi,t
ambusher shows the position of ith ambusher

at iteration t and d denotes the distance between the ambushers and the prey.
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Moreover, apc is the average position of chasers, apa is the average position
of ambushers, and xprey is best position or prey position. Crocodiles update
their position according to the positions of the prey or average of the position
of all groups. In this way, if ( ln(it)

ln(maxit) × r) < 0.5, then (8)(a) is implemented
that means that each ambusher swims around the prey with a rotational
motion, and if ( ln(it)

ln(maxit) × r) ≥ 0.5, then ambushers update their position
according to the average of the position of all groups of chasers, ambushers,
and the position of prey. How to calculate the average position of all groups
is shown in (7).

3.4 Flowchart and pseudocode of the CHS

Given that the CHS algorithm is implemented in MATLAB software 2019b,
in order to provide more explanation of the structure of the programming
of the CHS algorithm, the pseudocode is presented as Algorithm 2, and the
flowchart is shown in Figure 3. According to the pseudocode, after deter-
mining the initial parameters, such as the number of population, the maxi-
mum number of the iteration, the number of population of each group of the
crocodiles, the lower and upper bound of the decision variable, and so on,
the initializing phase is done. In the initializing phase, to create the number
of the population, the random solutions are generated based on the uniform
distribution that all of the solutions are between the lower and upper bounds
of the objective function. These random solutions are evaluated based on
the objective function. Before entering the main phases, the population is
divided into two groups. Fifty percent of the population includes chasers,
and the other fifty percent includes ambushers’ population. It is assumed
that the solution with the minimum objective value is the best solution, and
other members of the population are considered crocodiles. Therefore, the
population number is equal to npop = nc + ng, which is always an even
number. Because the number of the population is halved, the number of all
members of the population is always an even number.

In the following pseudocode, the first phase is performed based on (3)
for each solution of the chasers population. Then each solution is evaluated
based on the objective function. In this phase, if a better solution is found,
then it will be replaced by the best solution. In the second phase, for each
solution of the ambusher’s population, (8) is performed and each solution
is evaluated. In this phase, a better solution will be replaced instead of
the best solution. According to the flowchart, after passing all phases of
the algorithm, the stopping Criteria’s are checked, if the stopping Criteria’s
are satisfied, then the best solutions, along with the objective value, will be
reported. Otherwise, the number of iterations is added to a unit, and from
the first phase, all steps are repeated.
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3.5 Exploration and exploitation

In designing a metaheuristic algorithm, the balancing of the two criteria of ex-
ploration and exploitation increases the efficiency of the algorithm [3, 36, 28].
The experiences show that in the initial iterations, the ability of exploration
should be increased, and in the final iterations, the power of exploitation
should be increased. This means that in the initial iterations, the different
parts of the solution space should be searched, and in the last iterations, the
optimal solution should be searched more accurately. This rule has been ob-
served in the CHS algorithm. In this way, in the exploitation phases, small
mutations occur, and in the exploration phases, longer mutations occur. The
CHS is divided into two phases, and in each phase, there is the main equa-
tion. Equation (3) is the main equation of the first phase and (8) is the
second one. In the first iterations, part (b) of the main equations is more
implemented because, in most solutions, the value of

(
ln(it)

ln(maxit) × r
)

is less
than 0.5 in most cases. Therefore (b) is implemented in most times that (b)’s
increase the power of exploration. Whereas in the last iterations, part (a) of
(3) and (8) is implemented because in most cases the value of

(
ln(it)

ln(maxit) × r
)

is greater than 0.5 that increase the power of exploitation.

Figure 2: The flowchart of the CHS
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Algorithm 1 The pseudocode of the CHS
set initial parameters
best solution=+∞
Initializing
For each population
Generate random position between lower and upper bounds
Evaluation of random position
Update the best solution and current solution
End for
update the best solution
dividing the population into the chasers and ambushers
Main loop
While nfe ≤ maxnfe
-First phase
For each population of chasers
If

(
ln(it)

ln(maxit)
× r

)
> 0.5

Implementing (3)(a)
Else if

(
ln(it)

ln(maxit)
× r

)
≤ 0.5

Implementing (3)(b)
end if
Update the best solution and current solution
End for
-Second phase
For each population of ambushers
If

(
ln(it)

ln(maxit)
× r

)
> 0.5

Implementing (8)(a)
Else if

(
ln(it)

ln(maxit)
× r

)
≤ 0.5

Implementing (8)(b)
end if
Update the best solution and current solution
End for
It=it+1
End while (main loop)
Report the best solution
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4 Evaluation of the CHS algorithm

In this section, two types of test functions are used to evaluate the efficiency
of the CHS algorithm. The first category includes classical benchmark func-
tions, and second category includes constrained engineering design problems.
In addition, several well-known metaheuristics are used to compare with the
CHS algorithm. In the following, classical test functions will be explained
and metaheuristics will be compared using test functions. Then, the compar-
ative results of metaheuristics will be shown in the constrained engineering
design problems.

4.1 Classic test functions

In Table 1, 20 well-known test functions are shown, which are used to evaluate
the CHS algorithm. In this table, the code of each test function, the name of
each function, the lower and upper bounds of each function, the dimensions
investigated, the formula, the minimum value of each function, and the type
of each function in terms of unimodal and multimodal are shown, respectively.
According to Table 1, there are six unimodal and 14 multimodal functions. In
particular, unimodal functions are useful tools for benchmarking exploitation.
In contrast, multimodal functions have many local optima and are suitable
tools to evaluate the ability to the exploration of metaheuristics.

In Table 4, perspective views of the classic test functions are displayed. In
this study, the number of function evaluations (NFE) is used for the stopping
criteria. The value of NFE is equal to NFE = maxit × npop that maxit
denotes a maximum of iteration, and npop denotes the number of population
of the algorithm. For the functions, f1–f12, the value of NFE is 50,000, and
for f13–f20, the value of NFE is 180,000. Because the functions f1–f12 are
investigated in two dimensions, and the functions f13–f20 are investigated in
thirty dimensions. Given that as the dimensions increase, it becomes harder
to reach the optimal solution; accordingly, it should give more time to the
algorithms for reaching better solutions. Therefore, the value of NFE in
the functions of f13–f20 is greater than f1–f12. In order to validate the results,
the CHS algorithm is compared with four well-known high-performance algo-
rithms that are ACO, DE, genetic algorithm (GA), and PSO. Table 2 shows
the results of the study on classical functions in two dimensions. Among
these functions, there are three unimodal and nine multimodal functions. In
addition, in Tables 2 and 3, three indicators of the best cost, the average of
the best costs, and the standard deviation of the best costs have been used
to investigate the performance of the CHS algorithm in the functions f1–f12.
The average of the best cost is calculated based on A =

∑maxit
i=1 bestcosti

maxit that
bestcosti is the value of the best cost in ith iteration. Also, the standard

IJNAO, Vol. 12, No. 2, pp 397–425



408 Balavand

Table 1: Benchmark functions (NF= number of functions, D= dimension,
U=unimodal, M = multimodal)

NF Function Range D Formulation Min type
(f1) Beale [−4.5, 4.5] 2 f (x) = (1.5− x1 + x1x2)

2
+ (2.25− x1 + x1x

2
2)

2
+ (2.625− x1 + x1x

3
2)

2 0 U
(f2) Bird [−2π, 2π] 2 f (x) = sin (x1) .

[[
exp [1− cos(x2)]

2
]
+ cos (x2)

]
.exp

[
1− sin(x1)

2
]
+ (x1 − x2)

2 -106.76 M
(f3) Booth [−10, 10] 2 f (x) = (x1 + 2x2 − 7)

2
+ (2x1 + x2 − 5)

2 0 M

(f4) Carrom- Table [−10, 10] 2 f (x) =

 [−cos2(x1) .cos2(x2) ].exp
[∣∣∣∣∣ 1−

√
x2
1+x2

2
π

∣∣∣∣∣
]2

30

 -24.157 M

(f5) Cross-in-tray [−10, 10] 2 f (x) = −0.0001.

[∣∣∣∣sin (x1) .sin (x2) .exp

[∣∣∣∣100−
(√

x2
1+x2

2

)
π

∣∣∣∣] + 1

∣∣∣∣]0.1 -2.0626 M

(f6) Cross-Leg -Table [−10, 10] 2 f (x) = − 1∣∣∣∣∣∣sin(x1) .sin(x2) .exp

∣∣∣∣∣∣100−
(√

x2
1+x2

2

)
π

∣∣∣∣∣∣
 +1

∣∣∣∣∣∣
0.1 -1 M

(f7) Crowned cross [−10, 10] 2 f (x) = 0.0001

[∣∣∣∣sin (x1) .sin (x2) .exp

[∣∣∣∣100−
(√

x2
1+x2

2

)
π

∣∣∣∣] + 1

∣∣∣∣]0.1 0.0001 M

(f8) Easom [−100, 100] 2 f (x) = −cos (x1) .cos (x2) .exp(
[
−(x1 − π)

2 − (x2 − π)
2
]

-1 U
(f9) Himmelblau [−5, 5] 2 f (x) = (x2

1 + x2 − 11)
2
+ (x1 + x2

2 − 7)
2 0 M

(f10) Matyas [−10, 10] 2 f (x) = 0.26
(
x2
1 + x2

2

)
− 0.48x1x2 0 U

(f11) Pen-holder [−11, 11] 2 f (x) = −exp

[
−
∣∣∣∣cos (x1) .cos (x2) .exp

[∣∣∣∣1−√x2
1+x2

2

π

∣∣∣∣]∣∣∣∣]−1

-0.9635 M

(f12) Six-hump-camel [−5, 5] 2 f (x) =
(
4− 2.1x2

1 +
x4
1

3

)
x2
1 + x1x2 +

(
4x2

2 − 4
)
x2
2 -1.0316 M

(f13) Ackley [−35, 35] 30 f (x) = −20exp
[
−0.2

√
1
n

∑n
i=1 x

2
i

]
− exp

[
1
n

∑n
i=1 cos (2πxi)

]
+ 20 + exp (1) 0 M

(f14) Griewank [−600, 600] 30 f (x) =
∑n

i=1
x2
i

4000 −
∏n

i=1 cos
(

xi√
i

)
+ 1 0 M

(f15) Michalewicz [0, π] 30 f (x) = −
∑n

i=1 sin (xi)sin
2m
(

ix2
i

π

)
-29.630 M

(f16) Rastrigin [−5.12, 5.12] 30 f (x) = 10n+
∑n

i=1

[
x2
i − 10cos(2πxi)

]
0 M

(f17) Rosenbrock [−100, 100] 30 f (x) =
∑n−1

i=1 100(xi+1 − x2
i )

2
+ (xi − 1)

2 0 M
(f18) Sphere [−100, 100] 30 f (x) =

∑n
i=1 x

2
i 0 U

(f19) Step [−5.12, 5.12] 30 f (x) =
∑n

i=1 (xi + 0.5)
2

0 U
(f20) Quartic [−1.28, 1.28] 30 f (x) =

∑n
i=1 ix

4
i + rand(0, 1) 0 U

deviation of the best cost is calculated based on std = std(bestcosts), in
which bestcosts is the vector of the best costs. In Table 3, the best cost, the
average of the best costs, and the standard deviation of the best costs are
calculated. In this table, the functions of Ackley, Griewank, Michalewicz,
Rastrigin, Rosenbrock, Sphere, Step, and Quartic are investigated in the
thirty dimensions. The Ackley function has plenty of local minimal, and a
large hole is located in the middle of this function. The Griewank function
has a lot of local minimal. The specific structure of the Michalewicz function
makes that this function becomes a hard function. The Rastrigin function is
a high multimodal function, but its local minima are distributed regularly.
The well-known function of Rosenbrock is a hard function that converging
to its optimal global solution has always been a challenge for metaheuris-
tics. The sphere function is unimodal and convex. The Step function is the
same as the Sphere function, with the difference that its center is moved.
The Quartic function is a unimodal function that is always a hard function
among convex functions.

The search history of the CHS algorithm in Ackley, Michalewicz, Ras-
trigin, and Quartic is shown in Table 5. This table shows that the CHS
algorithm uses exploration to search almost all local optimizations, and after
approaching the global solution, it has searched for better solutions around it.
The results obtained in Table 2 show that, in all test functions, the CHS algo-
rithm has a superior performance and reaches the optimal global solution. Ac-
cording to this table, except for f8, the CHS has had a good performance, and
in functions f6, f7, f10, the CHS has had the best performance compared to
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Table 2: Comparative results of the CHS with ACO, DE, GA, and PSO in two-
dimensional benchmark functions.

Function parameters ACO DE GA CHS PSO
Best 3.7285E-15 0.0000E+00 5.3573E-09 0.0000E+00 0.0000E+00

f1 Mean 3.0446E-04 1.7499E-04 1.4618E-04 2.8217E-03 6.1959E-04
Variance 3.6041E-03 1.4767E-03 2.3619E-03 3.9028E-02 9.8299E-03
Best -1.067E+02 -1.067E+02 -1.067E+02 -1.067E+02 -1.067E+02

f2 Mean -1.0657E+02 -1.0670E+02 -1.0671E+02 -1.0670E+02 -1.0675E+02
Variance 2.3277E+00 6.2301E-01 6.1592E-01 8.0510E-01 1.4927E-01
Best 0.0000E+00 0.0000E+00 6.6867E-05 0.0000E+00 0.0000E+00

f3 Mean 1.1495E-03 1.3656E-02 2.1538E-04 6.3135E-03 1.9529E-03
Variance 2.0576E-02 1.8990E-01 1.7110E-03 1.0428E-01 5.6387E-02
Best -2.4157E+01 -2.4157E+01 -2.4157E+01 -2.4157E+01 -2.4157E+01

f4 Mean -2.4152E+01 -2.4154E+01 -2.4154E+01 -2.4146E+01 -2.4154E+01
Variance 9.7867E-02 6.5639E-02 5.5639E-02 2.5004E-01 7.9855E-02
Best -2.0626E+00 -2.0626E+00 -2.0626E+00 -2.0626E+00 -2.0626E+00

f5 Mean -2.0625E+00 -2.0624E+00 -2.0625E+00 -2.0626E+00 -2.0626E+00
Variance 2.2683E-03 2.9736E-03 3.3138E-03 5.8323E-04 1.0088E-03
Best -8.4778E-02 -8.4778E-02 -8.4778E-02 -1.0000E+00 -8.4778E-02

f6 Mean -7.4230E-02 -7.3789E-02 -7.3789E-02 -1.0000E+00 -5.7640E-02
Variance 2.7300E-02 2.7295E-02 2.7295E-02 0.0000E+00 3.6339E-02
Best 2.3790E-01 1.1795E-03 1.7427E-02 1.0000E-04 1.0000E-04

f7 Mean 4.4454E-01 3.2020E-02 2.8825E-02 1.0092E-03 6.1287E-02
Variance 9.1072E-02 1.0853E-01 6.8593E-02 2.8750E-02 1.6701E-01
Best -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00

f8 Mean -9.9294E-01 -9.4630E-01 -9.4630E-01 -9.8772E-01 -9.8969E-01
Variance 7.2850E-02 2.1878E-01 2.1878E-01 8.9564E-02 9.2793E-02
Best 0.0000E+00 7.8886E-31 7.8886E-31 7.8886E-31 7.8886E-31

f9 Mean 5.5989E-03 1.2939E-02 1.3149E-02 1.4854E-02 5.6025E-03
Variance 7.2871E-02 1.6169E-01 1.7269E-01 1.4631E-01 1.2813E-01
Best 3.6536E-14 1.0988E-70 1.0988E-70 0.0000E+00 9.3840E-83

f10 Mean 2.9606E-04 8.5572E-04 8.5572E-04 6.5336E-06 6.4553E-04
Variance 3.8089E-03 1.1494E-02 1.1494E-02 2.0661E-04 1.4383E-02
Best -9.6353E-01 -9.6353E-01 -9.6353E-01 -9.6353E-01 -9.6353E-01

f11 Mean -9.6345E-01 -9.6352E-01 -9.6352E-01 -9.6347E-01 -9.6353E-01
Variance 1.0913E-03 1.1988E-04 1.2088E-03 5.8280E-04 2.5529E-05
Best -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00

f12 Mean -1.0303E+00 -1.0311E+00 -1.0307E+00 -1.0301E+00 -1.0308E+00
Variance 3.5421E-02 5.7551E-03 1.7266E-02 3.3696E-02 2.3828E-02
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Table 3: Comparative results of the CHS with ACO, DE, GA, and PSO in three-
dimensional benchmark functions.

Function parameters ACO DE GA CHS PSO
Best 4.4409E-15 1.5099E-14 4.0861E-02 8.8818E-16 1.5099E-14

f13 Mean 3.4812E-01 1.3290E+00 8.8208E-01 4.3144E-03 3.1990E-01
Variance 2.0814E+00 4.0717E+00 1.9128E+00 1.3531E-01 1.4827E+00
Best 9.8573E-03 0.0000E+00 5.9285E-02 0.0000E+00 1.2321E-02

f14 Mean 2.2289E+00 7.7930E+00 1.5710E+00 3.6101E-03 6.6917E-01
Variance 2.5471E+01 4.4016E+01 1.1665E+01 8.9211E-02 1.0457E+01
Best -1.5282E+01 -2.8588E+01 -2.9588E+01 -2.4338E+01 -2.5882E+01

f15 Mean -1.4375E+01 -2.5639E+01 -2.8840E+01 -2.3855E+01 -2.5667E+01
Variance 1.0662E+00 3.5141E+00 2.2322E+00 1.8568E+00 1.5003E+00
Best 8.9546E+00 3.5499E+01 2.5984E-02 0.0000E+00 3.6813E+01

f16 Mean 3.5185E+01 7.8142E+01 1.2294E+01 1.2679E+00 4.1114E+01
Variance 6.3628E+01 5.0830E+01 3.1570E+01 1.7385E+01 2.4295E+01
Best 2.3585E+01 2.7599E+01 1.8210E+02 1.5166E+00 2.3434E+01

f17 Mean 7.7561E+07 2.2186E+08 9.5396E+06 3.7934E+06 8.7383E+06
Variance 1.1298E+09 1.6832E+09 2.0580E+08 1.5632E+08 2.8500E+08
Best 5.9710E-107 8.2297E-28 1.5372E-02 0.0000E+00 3.2359E-40

f18 Mean 2.3492E+02 8.6412E+02 1.5473E+02 1.6111E+01 6.0851E+01
Variance 2.7076E+03 5.0574E+03 1.2821E+03 5.5154E+02 1.1066E+03
Best 2.7733E-32 1.7133E-30 6.2775E-05 2.9041E-07 0.0000E+00

f19 Mean 5.8458E-01 2.0791E+00 2.4766E-01 9.7130E-02 1.8939E-01
Variance 6.9647E+00 1.2470E+01 2.4888E+00 1.4607E+00 2.9788E+00

f20 Best 1.6655E-03 9.6106E-03 1.9030E-02 3.5024E-05 4.3593E-03
Mean 2.6485E-01 9.6546E-01 7.6241E-02 2.1654E-03 6.1895E-02

Variance 3.8147E+00 7.1113E+00 7.0836E-01 6.8662E-02 1.3975E+00

other metaheuristics in terms of best costs. The results in Table 3 show the ef-
ficiency of the algorithms in the test functions f13 to f20. Based on this table,
the performance of the CHS algorithm has been better than other algorithms
in terms of the best solution in the functions f13, f14, f16, f17, f18, f20. Further-
more, the CHS algorithm has reached the optimal solution in f14, f16, f18, f20,
and the difference between the optimal solution and the obtained result in
the functions f13, f15, f17, f19 is low. The extreme convergence of the CHS al-
gorithm in multimodal functions f13, f14, f16, f17 and the unimodal functions
f18, f19 , f20 are quite evident in Table 6. In total, among the 20 classic func-
tions, the CHS algorithm has reached the optimal solution in 17 functions,
where among 17 functions, 12 functions are multimodal and five of them are
unimodal. Also, in the six functions, the CHS algorithm has had better re-
sults compared to the other algorithms. In all of the classical test functions
except for f9, in terms of the best solution, none of the algorithms is able
to provide a better solution than the CHS. These results indicate a good
balance between the exploration and exploitation in the CHS algorithm.

4.2 Constrained engineering design problems

In recent years, constrained engineering design problems have been used in
various papers to examine the performance of metaheuristic algorithms. For
example, six constrained engineering design problems to evaluate the crow

IJNAO, Vol. 12, No. 2, pp 397–425



Crocodile Hunting Strategy (CHS): A comparative study using benchmark ... 411

Table 4: Perspective view for benchmark functions
Beale(f1) Bird(f2) Booth(f3) Carrom-table(f4)

Cross-in-tray(f5) Cross-leg-table(f6) Crowned cross (f7) Easom(f8)

Himmelblau(f9) Matyas(f10) Pen-holder(f11) Six-hump-camel(f12)

Ackley(f13) Griewank(f14) Michalewicz(f15) Rosenbrock(f16)

Rastrigin(f17) Sphere(f18) Step(f19) Qartic(f20)
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Table 5: Search history of the CHS
f13 f15

f16 f20

search algorithm were used in [5], five constrained engineering design prob-
lems were used to evaluate the league championship algorithm in [22], eight
constrained engineering design problems to examine the mine blast algorithm
were used in [39], and seven constrained engineering design problems were
solved with water cycle algorithm in [15]. In this section, four constrained
engineering design problems, including a three-bar design problem, pressure
vessel design problem, Tension/compression spring design, and welded beam
design problem, are used to study the performance of the CHS algorithm.
Creating an effective balance in searching between acceptable and unaccept-
able solutions is one of the challenges in solving engineering design problems.
Various strategies have emerged to handle unacceptable areas in evolutionary
computing. Transferring constraints to the objective function with a penalty
factor and transforming the optimization problem into an unstrained prob-
lem [9] is the basic idea of the penalty function. Additive penalty functions
[9, 30] will be used to solve this problem in this paper, which is one of
the famous methods. In order to investigate the performance of the CHS
algorithm, several indicators are used, including the values of the decision
variables, the constraint values, and the best solution. In order to compare
the performance, the following four optimization algorithms were used:

1. FA (firefly algorithm)

2. Harmony Search (HS)

3. SFLA (shuffled frog-leaping algorithm)
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Table 6: Compare performance algorithms
f13 f14

f15 f16

f17 f18

f19 f20
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Table 7: Comparative results of the CHS with FA, HS, SFLA, and TLBO in three-bar
truss design problem.

Parameters FA CHS HS SFLA TLBO
x1 7.886774424E-01 7.886783330E-01 7.880650859E-01 7.865946407E-01 7.886790873E-01
x2 4.082417630E-01 4.082392461E-01 4.099765093E-01 4.141648543E-01 4.082371275E-01
g1 -1.114419668E-11 -1.532325600E-09 4.653166741E-12 6.646239115E-12 -1.276911088E-08
g2 -1.464109036 -1.464111898 -1.462138552 -1.457394322 -1.464114312
g3 -5.358909643E-01 -5.358881039E-01 -5.378614480E-01 -5.426056785E-01 -5.358857010E-01

Best Value 2.638958434E+02 2.638958436E+02 2.638961174E+02 2.638990472E+02 2.638958451E+02

4. Teaching-learning-based optimization (TLBO)

The three-bar truss design problem Minimizing the volume of a statis-
tically loaded three-bar truss with respect to stress limits (σ) [38] is the main
objective in the three-bar truss design problem. The mathematical model of
the problem is based on the following equation:

Minf (x) = (2
√
2x1 + x2)× l

s.t.

g1 (x) =

√
2x1 + x2√

2x2
1 + 2x1x2

p− σ ≤ 0,

g2 (x) =
x2√

2x2
1 + 2x1x2

p− σ ≤ 0,

g3 (x) =
1√

2x2 + x1

p− σ ≤ 0,

0 ≤xi ≤ 1, i = 1, 2,

l = 100 cm, p = 2
kN

cm2
, σ = 2

kN

cm2
. (7)

This problem has two continuous decision variables and three unequal
constraints. In Figure 3, the three-bar truss design is represented schemati-
cally. Figure 4 shows the convergence rate of the CHS algorithm in finding
an optimal solution to the three-bar truss design problem.

The results of Table 4 show that there are no significant difference between
decision variables, constraints values, and the best solutions. The best result
is related to the FA algorithm, and then the CHS algorithm outperforms HS,
SFLA, and TLBO. The amount of NFE for solving this problem is assumed
24,000, and the results of the decision variables and the best solution are
equal to

X∗ = (0.7886783, 0.4082392) ,

f(X∗) = 263.8958436.

The Pressure vessel design problem As shown in Figure 5, in the design
of a pressure vessel, a cylindrical pressure tank is used that has two joints in
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Figure 3: The three-bar truss design problem

Figure 4: Convergence rate of the CHS for finding best solution of three-bar truss
design problem

two cylindrical heads. The purpose of this problem is to minimize the weight
of the pressure vessel, including the weight of the shell and the welding lines.
The mathematical model of this problem is shown as follows:
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Minf (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t.

g1 (x) = −x1 + 0.0193x3 ≤ 0,

g2 (x) = −x2 + 0.00954x3 ≤ 0,

g3 (x) = −πx2
3x4 −

4

3
πx3

3 + 1, 296, 000 ≤ 0

g4 (x) = x4 − 240 ≤ 0,

0 ≤ xi ≤ 100, i = 1, 2,

10 ≤ xi ≤ 200, i = 3, 4.

(8)

Based on this equation, (x1 or Ts) and (x2 or Th) show the thickness of
the shell and the thickness of the head, respectively. (x3 or R) represents
the inner radius, and (x4 or L) shows the cylindrical section of the vessel.
In order to solve this mixed-integer problem (MLP), the variables Ts and
Th are rounded, which are a coefficient of 0.0625, and R and L are continuous
variables. Figure 6 shows the convergence rate of the CHS algorithm to find
the best solution to this problem.

In order to solve this problem, the algorithms are implemented with NFE
= 180,000. Based on Table 5, the CHS and TLBO algorithms have had better
performance than the FA, HS, and SFLA algorithms. The values of decision
variables and the value of the objective function at the best solution are

X∗ = (0.8125, 0.4375, 42.0984456, 176.6365958) ,

f(X∗) = 6059.7143350.

Figure 5: Pressure vessel design problem

Tension/compression spring design optimization problem The ob-
jective of this problem is to minimize tension/spring weight with a linear
constraint and three nonlinear constraints [8]. Based on the following equa-
tion, the diameter of the wire (x1), the mean diameter of the coil (x3), and
the number of active coils (x2), are the decision variables of this problem:
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Table 8: Comparative results of the CHS with FA, HS, SFLA, and TLBO in Pressure
vessel design problem.

Parameters FA CHS HS SFLA TLBO
x1 0.8750(14× 0.0625) 0.8125(13× 0.0625) 1(16× 0.0625) 1.1875(19× 0.0625) 0.8125(13× 0.0625)
x2 0.4375(7× 0.0625) 0.4375(7× 0.0625) 0.5000(8× 0.0625) 0.5625(9× 0.0625) 0.4375(7× 0.0625)
x3 4.533678756E+01 4.209844560E+01 5.121941472E+01 5.896226415E+01 4.209844560E+01
x4 1.402538467E+02 1.766365958E+02 8.895572796E+01 4.004432558E+01 1.766365958E+02
g1 3.330669074E-16 2.220446049E-16 -1.146529598E-02 -4.952830189E-02 -1.744160372E-13
g2 -4.987046632E-03 -3.588082902E-02 -1.136678361E-02 3.330669074E-16 -3.588082902E-02
g3 0 0 -1.304185484E-03 0 -3.213062882E-08
g4 -9.974615329E+01 -6.336340416E+01 -1.510442720E+02 -1.999556744E+02 -6.336340416E+01

Best Value 6.090526202E+03 6.059714335E+03 6.466011401E+03 7.050673234E+03 6.059714335E+03

Figure 6: Convergence rate of the CHS for finding the best solution of pressure vessel
design problem

Minf (x) = (x3 + 2)x2x
2
1

s.t.

g1 (x) = 1− x3
2x3

71, 785x4
1

≤ 0,

g2 (x) =
4x2

2−x1x2

12, 566 (x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0,

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0,

g4 (x) =
x1 + x2

1.5
− 1 ≤ 0,

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15. (9)

The schematic representation of the problem is shown in Figure 7. Figure 8
shows the convergence rate of the CHS algorithm in finding the optimal so-
lution to the three-tension/compression spring design optimization problem.
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Figure 7: Tension/compression spring structure

Figure 8: Convergence rate of the CHS for finding best solution of Tension/compression
spring design optimization problem

In order to evaluate the performance of the algorithms in this problem,
the value of NFE is considered 60,000. The comparative results in Table 6
show that the best performance is related to the CHS algorithm. The FA and
TLBO algorithms have comparative results that show a better performance
than HS and TLBO. The decision variables and the value of the objective
function at the best solution are

X∗ = (0.051840, 0.360373, 11.077829) ,

f(X∗) = 0.0126657.

Table 9: Comparative results of THE CHS with FA, HS, SFLA, and TLBO in
Tension/compression spring design optimization problem.

Parameters FA CHS HS SFLA TLBO
x1 5.184988445E-02 5.184055530E-02 5.978313881E-02 5.743674882E-02 5.196149787E-02
x2 3.605990697E-01 3.603732438E-01 5.845192287E-01 5.114076090E-01 3.633072944E-01
x3 1.106499114E+01 1.107782927E+01 4.591474470 5.841058341 1.091284592E+01
g1 5.184988445E-02 -2.220446049E-16 -5.553424742E-08 -2.220446049E-16 -5.536883352E-08
g2 0 -2.220446049E-16 -5.749327642E-07 -3.330669074E-16 -1.695190543E-08
g3 -4.061383701 -4.060945295 -4.352426075 -4.280629258 -4.066606162
g4 -7.250340306E-01 -7.251908006E-01 -5.704650883E-01 -6.207704281E-01 -7.231541385E-01

Best Value 1.266570321E-02 1.266565028E-02 1.377015419E-02 1.322883405E-02 1.266658115E-02
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The welded beam design problem The aim of this problem is to minimize
the cost of the welded beam based on the shear stress τ , bending stress in
the beam σ, buckling load on the bar pc, and end deflection on the beam δ.
Based on (10), the decision variables are the weld thickness (x1), the weld
length (x2), the height of the bar (x3), and the thickness of the bar (x4). In
Figure 9, the welded beam design problem is shown schematically. Figure
10 shows the convergence rate of the CHS algorithm in finding the optimal
solution to this problem. Equation (10) shows that this problem has two
linear and five nonlinear unequal constraints as follows:

Minf (x) =1.10471x2
1x2 + 0.004811x3x4(14 + x2)

s.t.

g1 (x) =τx − τmax ≤ 0,

g2 (x) =σx − σmax ≤ 0,

g3 (x) =x1 − x4 ≤ 0,

g4 (x) =1.10471x2
1 + 0.04811x3x4 (14 + x2)− 5 ≤ 0,

g5 (x) =0.125− x1 ≤ 0,

g6 (x) =δx − δmax ≤ 0,

g7 (x) =p− pc (x) ≤ 0, (10)

where

τ (x) =

√
(τ)

2
+ 2ττ

x2

2R
+ (τ)

2
,

τ =
p√

2x1x2

, τ =
MR

j
, M = P

(
L+

x2

2

)
,

R =

√
x2

2

4
+

(
x1 + x3

2

)2

, δ (x) =
4PL3

Ex3
3x4

,

J =2

[
√
2x1x2

{
x2

2

12
+

(
x1 + x3

2

)2
}]

, σ (x) =
6PL

x4x2
3

,

Pc (x) =
4.013E

√
x2
3x

6
4

36

L2

(
1− x3

2L

√
E

4G

)
,

P =6000 lb, L = 14 in, E = 30e6 psi,

G =12e6 psi, σmax = 30, 000 psi,

τmax =13, 600 psi,

δmax =0.25 in, 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,

0.1 ≤x3 ≤ 10, 0.1 ≤ x4 ≤ 2.
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Figure 9: The welded beam design problem

Figure 10: Convergence rate of the CHS for finding best solution of Welded beam
design problem

Based on Table 7, with NFE = 60, 000, each of the three algorithms,
the FA, CHS, and TLBO algorithms, have had the same results in the values
of decision variables, constraint values, and best solutions that have outper-
formed HS and SFLA. The decision variables and the value of the objective
function at the best solution are

X∗ = (0.2057296, 3.4704887, 9.0366239, 0.2057296) ,

f(X∗) = 1.7248523.
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Table 10: Comparative results of The CHS with FA, HS, SFLA, and TLBO in Welded
beam design problem.

Parameters FA CHS HS SFLA TLBO
x1 2.057296398E-01 2.057296398E-01 2.350586911E-01 2.058573368E-01 2.057296398E-01
x2 3.470488665 3.470488665 3.166035310 3.468820796 3.470488665
x3 9.036623910 9.036623910 8.363477126 9.033820685 9.036623910
x4 2.057296398E-01 2.057296398E-01 2.401792830E-01 2.058573368E-01 2.057296398E-01
g1 0 0 -1.177816867E-02 -1.818989404E-12 0
g2 -7.275957614E-12 -7.275957614E-12 -6.404832093E-04 0 -2.182787284E-11
g3 6.695199950E-12 6.659200968E-12 -5.120591985E-03 8.307909916E-12 6.767586491E-12
g4 -3.432983785 -3.432983785 -3.335285590 -3.432642630 -3.432983785
g5 -8.072963979E-02 -8.072963979E-02 -1.100586911E-01 -8.085733680E-02 -8.072963979E-02
g6 -2.355403226E-01 -2.355403226E-01 -2.343765145E-01 -2.355358357E-01 -2.355403226E-01
g7 0 0 -3.061301599E+03 -9.953428131 0

Best Value 1.724852309 1.724852309 1.852177649 1.725311383 1.724852309

5 Conclusion

In this study, the CHS (crocodile optimization algorithm) was investigated
as a swarm intelligence algorithm. The CHS algorithm was classified as the
population-based algorithm that simulates the behavior of the crocodiles in
finding food. Crocodiles have proper strategies while hunting. In this way,
when hunting, the population is divided into two groups: the chasers and
the ambushers. The chasers direct the prey to the attacking area without
catching it, and the ambushers hide in the attacking area and attack fishes
in the attacking area. Using this strategy, the prey was directed to the at-
tacking area and eventually was hunted by the ambushers and chasers. In
designing the CHS, two main equations were proposed for each group. The
structure of the algorithm was designed in such a way that explorations are
done in the first iterations, and exploitations are done in the last iterations.
In order to evaluate the efficiency of the CHS algorithm, 20 classical test
functions and four constrained engineering design problems were used. In
classical benchmarks, 12 classic test functions were in two dimensions and
eight classic test functions were investigated in 30 dimensions. In sum, it can
be said that in the classical test functions, the CHS algorithm shows a better
performance than the other algorithms in terms of convergence rate in less
iteration and the exploration and exploitation capability. In addition, in con-
strained engineering design problems, the CHS algorithm was outperformed
and able to produce good results. This performance showed that there is
a good balance between exploration and exploitation in the CHS algorithm
and that the equations are correctly designed.
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