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1 Introduction

In singularly perturbed delay partial differential equations (SPPDEs), a
small parameter affects the highest derivative of partial differential equations
(PDEs) and also contains more than one delay term in the time direction.
These SPPDEs have existence in subjects like physical/chemical science, bi-
ology, and ecology. Time delay (large) diffusion problems (the present time
depends upon the past) appear in mathematical models in population dy-
namics [13, 26, 17] and also in biological modeling [29].

Consider the following time delay reaction-diffusion initial-boundary-
value problems (IBVPs):

( ∂

∂s
+ Lε,s

)
z(y, s) = −b(y, s)z(y, s− γ) + f(y, s), (y, s) ∈ D,

z(y, s) = Θb(y, s), (y, s) ∈ �b,
z(0, s) = Θl(s), on �l = {(0, s) : 0 ≤ s ≤ S},
z(1, s) = Θr(s), on �r = {(1, s) : 0 ≤ s ≤ S},

(1)

where Lε,yz(y, s) = −εzyy(y, s) + p(y)z(y, s). Here = (0, 1), D = Π ×
(0, S], � = �l∪ �b∪�r. Moreover, γ > 0 is a given constant. This model (1) is
singularly perturbed, parabolic in nature with 0 < ε ≪ 1. Moreover, �r and
�l are the right and the left sides of the domain D, and �b = [0, 1]× [−γ, 0].
The functions b(y, s) (b(y, s) > 0), p(y)(p(y) ≥ β > 0), the source term
f(y, s) on D and Θl(s), Θr(s), Θb(y, s) on �, are bounded, sufficiently
smooth functions. The assumption on the time S is S = mγ for m ∈ N .
We also assume that suitable compatibility conditions hold true on the given
boundary and initial data to ensure a unique solution for (1) that exhibits
boundary layers along with end points of y [1, 19]. These conditions are
Θb(0, 0) = Θl(0), Θb(1, 0) = Θr(0), and

dΘl(0)

ds
− ε

∂2Θb(0, 0)

∂y2
+ p(0)Θb(0, 0) = −b(0, 0)Θb(0, − γ) + f(0, 0),

dΘr(0)

ds
− ε

∂2Θb(1, 0)

∂y2
+ p(1)Θb(1, 0) = −b(1, 0)Θb(1, − γ) + f(1, 0).

Due to the small parameter ε involved in the problem (1), the classical
methods on equal step length for solving (1) fail to give accurate results. They
are mostly unstable and unacceptable [22, 27]. Hence, we choose the fitted
mesh idea through the nonuniform mesh as given in [14, 20, 22, 25, 27] and
the references therein. One can refer [1, 7, 10, 9, 11, 18, 16, 23] for some order
enhancing methods of IBVPs. Some articles are available, which discuss both
the analytical and the numerical techniques for SPPDEs in literature. Ansari,
Bakr, and Shishkin [1] numerically solved the problem (1) on the Shishkin
mesh. Das and Natesan [6] gave details of numerical results for the time delay
parabolic convection diffusion problem. Indeed, the methods discussed above
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using numerical techniques are of first- or second-order accurate. Hence, order
enhancing techniques are needed for the problem (1), which is the main aim
of this work.

Richardson extrapolation through averaging the numerical solutions com-
puted on two embedded meshes provides a good approximation to the exact
solution. This helps to increase the accuracy and the order of convergence.
Mohapatra and Natesan [21] used the extrapolation technique for solving sin-
gularly perturbed delay BVPs while Shishkin and Shishkina [28] applied on
time dependent IBVPs of reaction-diffusion type. This technique is used in
[5] for convection-diffusion singularly perturbed parabolic problems on the
adaptive mesh. This article aims to get a fourth-order accurate solution for
(1) using the extrapolation technique. Initially, the central difference scheme
is used on Shishkin-type meshes and the Crank–Nicolson method on tempo-
ral direction on uniform mesh. Here, problem (1) is solved with M number of
mesh points in spatial and N number of mesh points in time direction. After
that (1) is solved by the above methods with 2M and 2N number of mesh
points. Then the rate of convergence increases from second- to fourth-order
globally by taking a proper combination of these two solutions.

The rest portion is arranged as follows. In Section 2, we describe the
continuous solution to the problem. Section 3 studies the construction of the
numerical schemes. In Section 4, we implement the post-process ideas and
the theoretical analysis. Section 5 presents the numerical results through
plots and tables. We denote C and the subscripted C’s as constants, which
are positive, independent of the small parameter (ε) and spatial and time
mesh sizes. The error is represented in the supremum norm (∥ · ∥∞). It is
defined as ||h||∞ = sup

(y,s)∈D

|h(y, s)| for any function h on the domain D.

2 Analytic solution and its behavior

As the perturbed parameter ε → 0 in (1), the problem reduces as given below:{
∂z0(y, s)

∂s
+ p(y)z0(y, s) = −b(y, s)z0(y, s− γ) + f(y, s), (y, s) ∈ D,

z0(y, s) = θb(y, s), (y, s) ∈ �b.
(2)

It is clear that the solution to (1) has boundary layers on �l and �r. The
characteristics of (2) are the vertical lines y = C, which implies that boundary
layers arising in the solution are parabolic type. The operator

( ∂
∂s

+ Lε,y

)
in (1) satisfies the following lemma known as the maximum principle.

Lemma 1. Suppose thatΨ(y, s) ∈ C0(D)∩C2(D) satisfies
( ∂

∂s
+Lε,y

)
Ψ(y, s) ≥

0 in D and that Ψ(y, s) ≥ 0 on �. Then Ψ(y, s) ≥ 0 for all (y, s) ∈ D.
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Proof. The proof of this lemma is available in [1].

2.1 Solution decomposition

The continuous solution z(y, s) to (1) is decomposed as z = vr + vs. The
regular component vr expresses as vr(y, s) = vr0(y, s)+εvr1(y, s), (y, s) ∈
D, where vr0 and vr1 are the solutions to the following problem:

(vr0)s(y, s) + p(y)vr0(y, s) = −b(y, s)vr0(y, s− γ) + f(y, s), (y, s) ∈ D,
vr0(y, s) = Θb(y, s), (y, s) ∈ �b,( ∂

∂s
+ Lε,y

)
vr1(y, s) = −b(y, s)vr1(y, s− γ) + (vr0)yy, (y, s) ∈ D,

vr1(y, s) = 0, (y, s) ∈ Γ.
(3)

The regular component vr(y, s) satisfies the following problem:
( ∂

∂s
+ Lε,y

)
vr(y, s) = −b(y, s)v(y, s− τ) + f(y, s), (y, s) ∈ D,

vr(y, s) = θb(y, s), (y, s) ∈ �b,
vr(0, t) = vr0(0, s), on �l = {(0, s) : 0 ≤ s ≤ S},
vr(1, t) = vr0(1, s), on �r = {(1, s) : 0 ≤ s ≤ S},

(4)

and the singular component vs(y, s) satisfies the PDE
( ∂

∂s
+ Lε,y

)
vs(y, s) = −b(y, s)vs(y, s− γ), (y, s) ∈ D,

vs(y, s) = 0, (y, s) ∈ Γb,
vs(0, s) = Θl − vr0(0, s), on �l = {(0, s) : 0 ≤ s ≤ S},
vs(1, s) = Θr − vr0(1, s), on �r = {(1, s) : 0 ≤ s ≤ S}.

(5)

Now, we can write vs = vsl + vsr, where vsl is the boundary layer part on �l
and vsr is the boundary layer part on �r. Here vsl and vsr are defined by

( ∂

∂s
+ Lε,y

)
vsl(y, s) = −b(y, s)vsl(y, s− γ), (y, s) ∈ D,

vsl(0, s) = θl − vr0(0, s) (y, s) ∈ �l vsl(y, s) = 0, (y, s) ∈ �b
⋃

�r,( ∂

∂s
+ Lε,y

)
vsr(y, s) = −b(y, s)vsr(y, s− γ), (y, s) ∈ D,

vsr(1, s) = Θr − vr0(1, s), (y, s) ∈ �r vsr(y, s) = 0, (y, s) ∈ �l
⋃
�b.

(6)

Theorem 1. For all integers l > 0 and m > 0 with 0 ≤ l + 2m ≤ 8, vr and
vs, defined in (3) and (5), respectively, satisfy
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∂yl∂sm

∥∥∥∥∥
∞

≤ C(1 + ε2−l/2), (y, s) ∈ D,

and∥∥∥∥∥ ∂l+mvr
∂yl∂sm

∥∥∥∥∥
∞

≤ Cε−l/2
(
exp(−y

√
β/ε) + exp(−(1− y)

√
β/ε)

)
, (y, s) ∈ D,∥∥∥∥∥∂l+mvsl

∂yl∂sm

∥∥∥∥∥
∞

≤ Cε−l/2
(
exp(−y

√
β/ε))

)
, (y, s) ∈ D,∥∥∥∥∥∂l+mvsr

∂yl∂sm

∥∥∥∥∥
∞

≤ Cε−l/2
(
exp(−(1− y)

√
β/ε)

)
, (y, s) ∈ D.

Proof. One may refer [1] for the details.

3 Discretization

On [0, S], the uniform time step ∆s is used in the time direction such that
ΠN

s = {sn = n∆s, n = 0, . . . , N, sN = S, ∆s = S/N}, Πp
s = {sj =

j∆s, j = 0, . . . , p, sp = γ, ∆s = γ/p}. Here, p represents the number of
mesh points in [−γ, 0] and N denotes the number of mesh points in temporal
direction on the interval [0, S]. The step size (∆s) satisfies p∆s = γ, where
p > 0 is an integer sn = n∆s, n ≥ −p.

3.1 Discretization of the spatial domain

Let ξ = min
{1
4
, ρ0

√
ε lnM

}
, where ρ0 ≥ 2/β is a mesh transition parameter.

We divide Π = [0, 1] into three subdomains as Π = Πl ∪ Πc ∪ Πr, where
Πl = [0, ξ],Πc = (ξ, 1− ξ], and Πr = (1− ξ, 1]. Without loss of generality, we
assume that M is even and that M ≥ 8.

Shishkin mesh(S-mesh)

One can find the construction of the S-mesh in [22, 27] briefly described as
follows: let us define S-mesh as ΠM

y = {yi ∈ [0, 1], 0 ≤ i ≤ M}, where
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yi =



4iξ

M
for 0 ≤ i ≤ M/4,

2i(1− 2ξ)

M
for M

4
+ 1 ≤ i ≤ 3M

4
,

4iξ

M
for 3M

4
+ 1 ≤ i ≤ M.

If ξ= 1

4
, then the mesh has equal step length and otherwise when ξ =

ρ0
√
ε lnM , the mesh is changing at near the end of �l and �r, where

yi − yi−1 = 4ξM−1. Therefore, the mesh is piecewise uniform.

Bakhvalov-Shishkin mesh (B-S-mesh)

The idea of constructing the B-S mesh is available in [4, 27]. The mesh is
constructed as follows:

yi =



2

β

(
− ln

(
1− 2(1− 1

M ) i
M

))
, for 0 ≤ i ≤ M/4− 1,

yM/4−1 +
(yM/4+1 − yM/4−1

M/2 + 2

)(
i−M/4 + 1

)
for M

4
≤ i ≤ 3M

4
,

1− 2

β

(
− ln

(
1− 2(1− 1

M )M−i
M

))
for 3M

4
+ 1 ≤ i ≤ M.

We define the numerical domain DM = ΠM
y ×ΠN

s on D and �M = ΠM
y ×Πp

s

on �.

3.2 Semidiscretization

The Crank–Nicolson scheme for the time variable of (1) is given by
z−j = Θb(y,−sj) for j = 0, . . . p, y ∈ D,(
I + ∆s

2
Lε,y

)
zn+1 = ∆s

2

(
− bn+1zn−p+1 − bnzn−p + fn+1 + fn

)
+
(
I − ∆s

2
Lε,y

)
zn,

zn+1(0) = Θl(sn+1), zn+1(1) = Θr(sn+1),

(7)
where fn = f(y, tn), bn = b(y, sn), zn = z(y, sn) is the semidiscrete
approximation to z(y, s) of (1) at sn = n∆s. Let en+1 = zn+1− z̃n+1 be the
local truncation error of (7) and let z̃n+1 be the solution to

z̃−j = Θb(y,−tj) for j = 0, . . . p, x ∈ D,(
I + ∆s

2
Lε,y

)
z̃n+1 = ∆s

2

(
− bn+1z̃n−p+1 − bnz̃n−p + fn+1 + fn

)
+
(
I − ∆s

2
Lε,y

)
(z̃2)n,

z̃n+1(0) = Θl(sn+1), z̃n+1(1) = Θr(sn+1).
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Hence, the global error at sn is given by En = z(y, sn)− zn(y).

3.3 Bounds on the solution and its derivatives

Consider the global error En+1 = en+1 + REn, associated with the scheme
(7). The transition operator

R =

(
I +

∆s

2
Lε,y

)−1(
I − ∆s

2
Lε,y

)
,

is defined as follows: set zn = En as the initial data with null boundary
condition and zero source term f. After one time step of (7), let REn be

the solution obtained. Using this, we have En+1 =

M∑
k=0

Rn−kek+1. Thus, we

claim

||Rj ||∞ ≤ C for all j = 0, 1, . . . , n. (8)

Then it follows that sup
n∆s≤S

||En+1||∞ ≤ C(∆s)2. Hence, the scheme (7) is

second-order accurate. It may be noted here that (8) is a stability condition.
The details of this argument were given in [3, 8].

Lemma 2. If
∣∣∣∣ ∂i

∂si
z(y, s)

∣∣∣∣ ≤ C for all (y, s) ∈ D, for 0 ≤ i ≤ 3, then

the local error with the method (7) satisfies

∥en+1∥ ≤ C(∆s)3. (9)

Proof. It can be shown using the same argument discussed in [3].

Theorem 2. The global error estimate En associated with (7) is given by
∥En∥∞ ≤ C(∆s)2 for all n ≤ S/∆s.

Proof. See [8].

Theorem 3. The derivatives of z(y, s) satisfy the bounds∣∣∣∣∣ ∂l+mz

∂yl∂sm

∣∣∣∣∣ ≤ Cε−l/2, (y, s) ∈ D for all l > 0,m > 0 with 0 ≤ l+ 2m ≤ 8.

Proof. Refer to [1] for the details.
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3.4 Totally finite difference scheme

The second-order approximation for the operator is given by

D+
y D

−
y ω

n
j =

2

hj + hj+1

(
ωn
j+1 − ωn

j

hj+1
−

ωn
j − ωn

j−1

hj

)
.

In time, the backward difference scheme is D−
s ω

n
j =

ωn
j − ωn−1

j

∆s
, where ωn

j =

ω(yj , sn). To solve (1), the Crank–Nicolson scheme for the time scale and the
central difference scheme for the space are combined as

2D−
t Z

n+1
i + LεZ

n+1
i = −bn+1

i Zn−p+1
i − bni Z

n−p
i + fni + fn+1

i − LεZ
n
i (10)

for 1 ≤ i < M.

Here,

LεZ
n
i = −εD+

y D
−
y Z

n
i + piZ

n
i , fni = f(yi, sn), bni = b(yi, sn), pi = p(yi).

After rearranging the terms in (10) and combining (7), the fully discrete
scheme is

1

2

(
r−i Z

n+1
i−1 + roiZ

n+1
i + r+i Z

n+1
i+1

)
= gMi , 1 ≤ i < M,

Zn+1
0 = Θl(sn+1), Zn+1

N = Θr(sn+1),

Z−j
i = Θb(yi,−sj) for j = 0, . . . , p and i = 1 ≤ i < M,

(11)

r−i = ∆s
(
− 2ε

ĥihi

)
, roi = ∆s

( 2ε

hi+1hi
+ bn+1

i

)
+ 1, r+i = ∆s

(
− 2ε

ĥihi+1

)
,

gMi =
∆s

2

(
− bn+1

i Zn−p+1
i − bni Z

n−p
i + fn+1

i + fni

)
+
(
1− ∆s

2
Lε

)
Zn
i

for 0 < i ≤ M − 1.

The difference equation (11) at n + 1 time level forms a tridiagonal system
of M − 1 equations with the same number of unknowns. This system has
properties like r−i < 0, roi > 0, r+i < 0 for 1 ≤ i ≤ M − 1. The Thomas
algorithm [24] is used to solve the tridiagonal system.

3.5 Error analysis

Theorem 4. Let z be the analytical solution to (1) and let Z be the numer-
ical solution (11). Then on S-mesh, the error of the scheme (11) satisfies the
following estimate:
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max
i,n

∣∣(z − Z)(yi, sn)
∣∣ ≤ C

(
(M−1 lnM)2 +∆s2

)
for i = 1, . . . ,M − 1.

On B-S-mesh, it satisfies

max
i,n

∣∣(z − Z)(yi, sn)
∣∣ ≤ C

(
M−2 +∆s2

)
for i = 1, . . . ,M − 1,

where Z(yi, sn) = Zn
i for (yi, sn) ∈ DM .

Proof. The proof is divided into various steps for each time level. On the
first interval s ∈ [0, γ] (the time discretization n varies from 0 to p), the term
f(y, s)− c(y, s)Θb(s, s− γ) in the right side of (1) is independent of ε. Now
since (yi, sn) ∈ DM

1 = ΠM
y × [0, γ), using the convergence results given in [3]

and Theorem 2, we obtain on S-mesh

max
i,n

∣∣(z − Z)(yi, sn)
∣∣ ≤ C

(
M−2 ln2 M + (∆s)2

)
for 0 < i < M.

Following a similar procedure done in [31, 30] for the error bounds on B-
S mesh, we consider the mesh generating function for B-S mesh ς(ξ) =

(2/β)ξχ(s), where χ(s) = − ln
(
1 − 2(1 − 1

M )(s)
)
. The mesh generating

function satisfies ς(ξ)′ ≤ CM , and assume that ε ≤ M−1. The spatial
mesh size hi on the layer region satisfies hi ≤ CM−1 and hi ≤ Cε, for
i = 0, 1, . . . , (M/4) − 1 and for i = (3M/4) + 1, . . . ,M . Now using the
bounds on the derivative of z given Theorem (3), we get on B-S-mesh,

max
i,n

∣∣(z − Z)(yi, sn)
∣∣ ≤ C

(
M−2 +∆s2

)
for i = 1, . . . ,M − 1,

Now, the term z(y, s) depends on z(y, s− γ), which is unknown for s ≥ γ.
So, the above process is not applicable for s ≥ γ. To get the error over
the interval [γ, 2γ], using the convergence results in [1] and Theorem 2, we
obtain the desired bound.

4 Post processing technique

To enhance the order for the difference scheme (10), we use the Richardson
extrapolation technique. First, we solve the discrete problems (11) on the
fine mesh D2M = Π

2M

y ×Π
2N

s with 2M and 2N mesh intervals in the spatial
and time direction respectively, where Π

2M

y is the Shishkin-type mesh and
is obtained by halving each mesh interval of Π

M

y with a fixed transition
parameter. Clearly, DM = {(yi, sn)} ⊂ D2M = {(yi, sn)}. Therefore, the
corresponding S-mesh is Π2M

y = {yi ∈ (0, 1), 0 ≤ i ≤ 2M} by
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yi =



2iξ

M
for 0 ≤ i ≤ M/2,

i(1− 2ξ)

M
for M

2
+ 1 ≤ i ≤ 3M

2
,

2iξ

M
for 3M

2
+ 1 ≤ i ≤ 2M,

and the B-S-mesh is

yi =



2

β

(
− ln

(
1− 2(1− 1

2M ) i
2M

))
for 0 ≤ i ≤ M/2− 1,

yM/2−1 +
(yM/2+1 − yM/2−1

M + 2

)(
i−M/2 + 1

)
for M

2
≤ i ≤ 3M

2
,

1− 2

β

(
− ln

(
1− 2(1− 1

2M ) 2M−i
2M

))
for i ≤ 3M

2
+ 1 ≤ 2M,

and sn − sn−1 = ∆s/2 for sn ∈ Π
2N

s . Now, from Theorem 4, the error is

(Z − z)(yi, sn) = C
(
(M−1 lnM)2 +∆s2

)
+ o
(
(M−1 lnM)2 +∆s2

)
,

= C(M
−1ξ

ρ0
√
ε
)2 + C∆s2 + o

(
(M−1 lnM)2 +∆s2

)
(12)

for (yi, sn) ∈ DM . Let Z(yi, sn) be the solution to (11) on the domain D2M .
From Theorem 4, we get

(Z − z)(yi, sn) = C
(
(2M)−2( ξ

ρ0
√
ε
)2 + (∆s

2 )2
)
+ o
(
(M−1 lnM)2 + (∆s

2 )2
)

(13)
for (yi, sn) ∈ D2M . Now, the elimination of o(M−2) term from (12) and (13)
leads to the following approximation:

z(yi, sn)−
1

3

(
4Z−Z

)
(yi, sn) = o

(
(M−1 lnM)2+∆s2

)
, (yi, sn) ∈ DM . (14)

Therefore, we use the extrapolation formula as

Zextp(yi, sn) =
1

3

(
4Z − Z

)
(yi, sn), (yi, sn) ∈ DM . (15)

Theorem 5. Let Zextp be the solution by extrapolation technique (15) and
let z be the solution to problem (1). Also, assume that

√
ε ≤ M−1. Then we

have the following error bound on S-mesh∣∣∣z(yi, sn)− Zextp(yi, sn)
∣∣∣ ≤ C

(
M−4 ln4 M +∆s4

)
for 1 ≤ i ≤ M − 1.

Proof. The term in right side of (1), f(y, s) − b(y, s)Θb(y, s − γ) is inde-
pendent of ε in the interval [0, γ], where the time discretization parameter n
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varies from 0 to p. One can find the complete analysis of the extrapolation
technique in [28].

Since z(y, s) depends on z(y, s − γ), which is unknown for s ≥ γ, the
approach in [28] is not applicable in the interval [γ, 2γ] and s ≥ γ. Therefore
the following delay parabolic equation involving small parameter considered
on domain D2 = Π× (γ, 2γ):


( ∂

∂s
+ Lε,y

)
z(y, s) = −b(y, s)z(y, s− γ) + f(y, s), (y, s) ∈ D2,

z(y, s) = zb(y, s), (y, s) ∈ D1 = Π× (0, γ),
z(0, s) = Θl(s), z(1, s) = Θr(s), s ∈ [γ, 2γ],

(16)

where zb(y, s) is a continuous solution in D1. Applying the scheme for (16)
on D2 as given in (10), we have

2D−
t Z

n+1
i − εδ2yZ

n+1
i + piZ

n+1
i = −bn+1

i Zn−p+1
i − bni Z

n−p
i (17)

+fni + fn+1
i − LεZ

n
i ,

Zn
0 = Θl(sn), Zn

N = Θr(sn), sn ∈ [γ, 2γ],

Z−j
i = Zb(yi, sn), (yi, sn) ∈ DM

1 ,

where δ2y = D−
y D

+
y , fni = f(yi, sn), (yi, sn) ∈ DM

2 and Z1
b (·, ·) is the numerical

solution in DM
1 .

Decompose z in (16) on the domain D2 as z = wr + ws, where wr is
the smooth component and ws is the singular component. Again we write
wr = wr0 + εwr1, satisfying{

∂wr0(y, s)

∂s
+ p(y)wr0(y, s) = −b(y, s)wr0(y, s− γ) + f(y, s), (y, s) ∈ D2,

wr0(y, s) = z(y, s), (y, s) ∈ D1, wr0(0, s) = z(0, s), s ∈ [γ, 2γ],
(18)

and{( ∂

∂s
+ Lε,y

)
wr1(y, s) = −b(y, s)wr1(y, s− γ) + (wr0)yy, (y, s) ∈ D2,

wr1(y, s) = 0, (y, s) ∈ D1, wr1(0, s) = 0, wr1(1, s) = 0, s ∈ [γ, 2γ].
(19)

Therefore
( ∂

∂s
+ Lε,y

)
wr(y, s) = −b(y, s)wr(y, s− γ) + f(y, s), (y, s) ∈ D2,

wr(y, s) = z(y, s), (y, s) ∈ D1,
wr(0, s) = wr0(0, s), wr(1, s) = wr0(1, s), s ∈ [γ, 2γ].

(20)
Then, the singular component ws satisfies
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( ∂

∂s
+ Lε,y

)
ws(y, s) = −b(y, s)ws(y, s− γ), (y, s) ∈ D2,

ws(y, s) = 0, (y, s) ∈ D1, ws(0, s) = Θl(s)− wr0(0, s),
ws(1, s) = Θr(s)− wr0(1, s), s ∈ [γ, 2γ].

(21)

Write ws = wsl +wsr, where wsl is the left boundary layer component on �l
and wsr is the right boundary layer component on �r. Also, wsl and wsr are
satisfying the following PDEs:

( ∂

∂s
+ Lε,y

)
wsl(y, s) = −b(y, s)wl(y, s− γ), (y, s) ∈ D2,

wsl(0, s) = Θl − wr0(0, s) s ∈ [γ, 2γ], wsl(y, s) = 0, (y, s) ∈ D1l,( ∂

∂s
+ Lε,y

)
wsr(y, s) = −b(y, s)wr(y, s− γ), (y, s) ∈ D2,

wsr(1, s) = Θr − wr0(1, s), s ∈ [γ, 2γ], wsr(y, s) = 0, (y, s) ∈ D1r,

(22)
where D1l = (0, ξ) × [0, γ] and D1r = (1 − ξ, 1) × [0, γ]. Since, D2 ⊂ D, the
estimates given in Theorem 1, can be used for wr and ws. Decompose the
numerical solution Z to (17) as Z = Wr +Ws, where Wr is the smooth part
and Ws is the singular part. Thus(

D+
s +D−

s + Lε

)
Wr

n+ 1
2

i = −b
n+ 1

2
i Wr

n+ 1
2−p

i + f
n+ 1

2
i , (yi, sn+ 1

2
) ∈ DM

2 ,(23)

Wr
n
i = Zb(yi, sn), (yi, sn) ∈ DM

1 ,

Wr
n
0 = wr(0, sn), Wr

n
N = wr(1, sn), sn ∈ [γ, 2γ],

and therefore, Ws satisfies(
D+

s +D−
s + Lε

)
Ws

n+ 1
2

i = −bni W
n+ 1

2−p
i , (yi, sn+ 1

2
) ∈ DM

2 , (24)

Ws
n
i = 0, (yi, sn) ∈ DM

1 ,

Ws
n
0 = Θl(sn)− wr(0, sn),

Ws
n
N = Θr(sn)− wr(1, sn), sn ∈ [γ, 2γ].

Now, we write Ws = Wsl+Wsr, where Wsl is the boundary layer on �Ml and
Wsr is the boundary layers on �Mr . Hence Wsl and Wsr are defined by(
D+

s +D−
s + Lε

)
Wsl(yi, sn+ 1

2
) = −bni Wsl(yi, sn+ 1

2−p), (yi, sn+ 1
2
) ∈ DM

2 ,

Wsl(0, sn) = Θl − wr(0, sn) (yi, sn) ∈ �l, Wsl(yi, sn) = 0, (yi, sn) ∈ DM
1l ,(

D+
s +D−

s + Lε

)
Wsr(yi, sn+ 1

2
) = −bni Wsr(yi, sn+ 1

2−p), (yi, tn+ 1
2
) ∈ DM

2 ,

Wsr(1, sn) = Θr − wr(1, sn), (yi, sn) ∈ �r, Wsr = 0, (yi, sn) ∈ DM
1r ,
(25)

where DM
1l is the discretized domain of D1l and DM

1r is the discretized domain
of D1l. Similarly �Ml is the discretized domain of �l and �Mr is the discretized
domain of �r.
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4.1 Error bound for Wr

Lemma 3. The local truncation error in DM
2 associated to the smooth com-

ponent satisfies(
2D−

s + Lε

)
(wr −Wr)(yi, sn)

= C
(
(M−1 lnM)2 +∆s2

)
+

ε

12
(yi − yi−1)

2 ∂
4wr

∂y4
(yi, sn− 1

2
)

+
1

12
∆s2

∂3wr

∂s3
(yi, sn) +O(M−4 +∆s4).

Proof. Using (20) and (23), we get(
2D−

s + Lε

)
(wr −Wr)(yi, sn)

= bni (z(yi, sn−p− 1
2
)− Zb(yi, sn−p− 1

2
)) +

( ∂

∂s
− 2D−

s

)
wr(yi, sn)

+
∂

∂s
wr(yi, sn−1)−+(Lε,y − Lε)wr(yi, sn− 1

2
).

Now, by using the estimate in Theorem 4 and Taylor’s expansion, the desired
result can be achieved. Refer to [8] for more details.

Let the function Ed(y, s), for d = 1, 2, satisfy the IBVPs (refer approach
of Kellar [12]):

( ∂

∂s
+ Lε,y

)
E1(y, s) =

ε

12

∂4wr(y, s)

∂y4
in D,

E1(y, s) = 0, (y, s) ∈ �b,
E1(0, s) = 0, E1(1, s) = 0, s ∈ [0,S],

(26)


( ∂

∂s
+ Lε,y

)
E2(y, s) =

1

12

∂3wr(y, s)

∂s3
in D,

E2(y, s) = 0, (y, s) ∈ Γb,
E2(0, s) = 0, E2(1, s) = 0, s ∈ [0,S].

(27)

Now Ed can be decomposed as Ed = ηd+ϑd, where ηd and ϑd are the regular
and singular layer parts of Ed. Now from Theorem 1, we have∥∥∥∥∥∂l+mηd

∂yl∂sm

∥∥∥∥∥
∞

≤ C(1 + ε2−l/2) for 0 ≤ l + 2m ≤ 8.

One can get these bounds using a similar procedure as done in [1]. Taking
(y, s) ∈ D2, (26) and (27) reduce to the following IBVPs:
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( ∂

∂s
+ Lε,y

)
E1(y, s) =

ε

12

∂4wr(y, s)

∂y4
in D2,

E1(y, s) = E1γ , (y, s) ∈ D1,
E1(0, s) = 0, E1(1, s) = 0, s ∈ [γ, 2γ],
( ∂

∂s
+ Lε,y

)
E2(y, s) =

1

12

∂3wr(y, s)

∂s3
in D2,

E2(y, s) = E2γ , (y, s) ∈ D1,
E2(0, s) = 0, E2(1, s) = 0, s ∈ [γ, 2γ],

where E1γ(·, ·) and E2γ(·, ·) are the respective solutions in D1. Therefore,
the components ηd and ϑd, d = 1, 2, satisfy

( ∂

∂s
+ Lε,y

)
η1 =

ε

12

∂4wr(y, s)

∂y4
in D2,( ∂

∂s
+ Lε,y

)
η2 =

1

12

∂3wr(y, s)

∂s3
in D2,

ηd(y, s) = Edγ , (y, s) ∈ D1 for d = 1, 2,
ηd(0, s) = 0, ηd(1, s) = −ϑd(1, s), s ∈ [γ, 2γ],

( ∂

∂s
+ Lε,y

)
ϑd = 0 in D2

ϑd(y, s) = 0, (y, s) ∈ D1 for d = 1, 2,
ϑd(0, s) = 0, ϑd(1, s) = −ηd(1, s), s ∈ [γ, 2γ].

(28)

Lemma 4. The local truncation error in DM
2 associated with wr satisfies

(wr −Wr)(yi, sn) = C
(
(M−1 lnM)2 +∆s2

)
+ (yi − yi−1)

2η1 + η2∆s+O(M−4 +∆s2).

Proof. From Lemma 3 and (28), one can easily get(
2D−

s + Lε

)
((wr −Wr)(yi, sn) = C

(
(M−1 lnM)2 +∆s

)
+h2

i

(( ∂

∂s
+ Lε,y

)
− (2D−

s + Lε)

)
η1

+∆s

(( ∂

∂s
+ Lε,y

)
− (2D−

s + Lε)

)
η2

+O(h4 +∆s4). (29)

Using the derivative bounds of ηd and from the Taylor’s expansion, it follows
that for d = 1, 2,∣∣∣∣∣h2

i

(( ∂

∂s
+ Lε,y

)
− (2D−

s + Lε)

)
η1 +∆s

(( ∂

∂s
+ Lε,y

)
− (2D−

s + Lε)

)
η2

∣∣∣∣∣
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≤ C
(
h4 +∆s4

)
. (30)

Therefore, from (29) and (30), we have(
2D−

s + Lε

)
(wr −Wr)(yi, sn) ≤ C

(
(M−1 lnM)2 +∆s2 +

(
h4 +∆s4

))
,

and, by applying barrier functions and the discrete maximum principle as
done in [22], we obtain the following bound:∣∣∣(wr−Wr)(yi, sn)

∣∣∣ ≤ C
(
(M−1 lnM)2+∆s2

)
+h2

i η1+η2∆s2+O(h4+∆s4).

Lemma 5. The error associated with Wr after extrapolation satisfies

(wr −Wrextp)(yi, sn) ≤ C
(
M−4 +∆s4

)
for (yi, sn) D

M
2 .

Proof. From Lemma 4 on the fine mesh D2N
2 , we have

(Wr−wr)(yi, sn) = C
(
(2M)−2(ln 2M)2+

∆s2

4

)
+

h2
i

4
η1+η2

∆s2

4
+O(M−4+∆s4). (31)

From the extrapolation formula (15), we can write

(wr −Wrextp)(yi, sn) = wr(yi, sn)−
(1
3
(4Wr −Wr)(yi, sn)

)
= −1

3

(
4(Wr − wr) + (Wr − wr)

)
(yi, sn).

By using Lemma 4 and (31), we obtain

−1

3

(
4(Wr − wr) + (Wr − wr)

)
(yi, sn) =

1

3

(
− C

(
(M−1 ln 2M)2 +∆s2

)
− h2

i η1 − η2∆s2

+ C
(
(M−1 lnM)2 +∆s2

)
+ h2

i η1 + η2∆s2

)
+O(M−4 +∆s4)

=O(M−4 +∆s4),

which is our desired bound.

Now, we define the function Fd = Fdl + Fdr, d = 1, 2, by the following
IBVPs:
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( ∂

∂s
+ Lε,y

)
F1l =

ρ0ε

3

∂4ws(y, s)

∂y4
, (y, s) in Dl = (0, ξ)× (0,S],( ∂

∂s
+ Lε,y

)
F1r =

ρ0ε

3

∂4ws(y, s)

∂y4
, (y, s) in Dr = (1− ξ, 1)× (0,S],

F1l(y, s) = 0, (y, s) ∈ [0, ξ]× (−γ, 0),
F1r(y, s) = 0, (y, s) ∈ [1− ξ, 1]× (−γ, 0),
F1l(0, s) = F1l(ξ, s) = 0, s ∈ (0,S],
F1r(1− ξ, s) = F1r(1, s) = 0, s ∈ (0,S],

(32)



( ∂

∂s
+ Lε,y

)
F2l =

1

12

∂3ws(y, s)

∂s3
, (y, s) in Dl = (0, ξ)× (0,S],( ∂

∂s
+ Lε,y

)
F2r =

1

12

∂3ws(y, s)

∂s3
, (y, s) in Dr = (1− ξ, 1)× (0,S],

F2l(y, s) = 0, (y, s) ∈ [0, ξ]× (−γ, 0),
F2r(y, s) = 0, (y, s) ∈ [1− ξ, 1]× (−γ, 0),
F2l(0, s) = F1l(ξ, s) = 0, s ∈ (0,S],
F2r(1− ξ, s) = F1r(1, s) = 0, s ∈ (0,S],

(33)
The solution Fd, d = 1, 2, to (32) and (33) satisfies the following bounds:∣∣∣∣∣∂l+mFd

∂yl∂sm

∣∣∣∣∣
∞

≤ Cε−l/2
(
exp(−y

√
β/ε) + exp(−(1− y)

√
β/ε)

)
, (y, s) ∈ D.

In this context, by considering s ∈ (γ, 2γ), therefore (32) and (33) reduces to

( ∂

∂s
+ Lε,y

)
F1l =

ρ0ε

3

∂4ws(y, s)

∂y4
, (y, s) in Dl = (0, ξ)× (γ, 2γ),( ∂

∂s
+ Lε,y

)
F1r =

ρ0ε

3

∂4ws(y, s)

∂y4
, (y, s) in Dr = (1− ξ, 1)× (γ, 2γ),

F1l(y, s) = F1lγ(y, s), (y, s) ∈ [0, ξ]× (0, γ),
F1r(y, s) = F1rγ(y, s), (y, s) ∈ [1− ξ, 1]× (0, γ),
F1l(0, s) = F1l(ξ, t) = 0, s ∈ (γ, 2γ),
F1r(1− ξ, t) = F1r(1, s) = 0, s ∈ (γ, 2γ),

(34)
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( ∂

∂s
+ Lε,x

)
F2l =

1

12

∂3ws(y, s)

∂s3
, (y, s) in Dl = (0, ξ)× (γ, 2γ),( ∂

∂s
+ Lε,y

)
F2r =

1

12

∂3ws(y, s)

∂s3
, (y, s) in Dr = (1− ξ, 1)× (γ, 2γ),

F2l(y, s) = F2lγ(y, s), (y, s) ∈ [0, ξ]× (0, γ),
F2r(y, s) = F2rγ(y, s), (y, s) ∈ [1− ξ, 1]× (0, γ),
F2l(0, s) = F2l(ξ, s) = 0, s ∈ (γ, 2γ),
F2r(1− ξ, s) = F1r(1, s) = 0, s ∈ (γ, 2γ),

(35)
where Fkl(·, ·), k = 1, 2, are the analytic solutions in [0, ξ]×(0, γ) and Fkr(·, ·),
k = 1, 2, are the analytic solutions in [1− ξ, 1]× (0, γ).

Lemma 6. For (yi, sn) D
M
2 , the error associated with Ws satisfies

(Ws−ws)(yi, sn) = (M−1 lnM)2F1(yi, sn)+∆s2F2(yi, sn)+O
(
M−4 ln4 M+∆s4

)
.

Proof. Write Ws = Wsl +Wsr, where Wsl and Wsr are defined in (25). Now
Ws−ws = (Wsl−wsl)+(Wsr−wsr), where the error Wsl−wsl is related to a
layer on Dl and Wsr −wsr on Dr. These errors can be estimated separately.
First, we estimate Wsl − wsl, from (22) and difference equation (25) and
follow the similar procedure of Lemma 4.

Next, we can estimate the error Wsr − wsr.

Lemma 7. For (yi, sn) D2
M , the error associated to Ws after extrapolation

satisfies ∣∣∣(ws −Wsextp)(yi, sn)
∣∣∣ ≤ C

(
M−4 ln4 M +∆s4

)
.

Proof. From Lemma 6, we get

(Ws − ws) = (M−1 lnM)2F1(yi, sn) + ∆s2F2(yi, sn)

+O
(
M−4 ln4 N +∆s4

)
for (yi, sn) D

M
2 , (36)

and

(ws −Ws) = ((2M)−1 ln 2M)2F1(yi, sn) +
∆s2

4
F2(yi, sn)

+O
(
M−4 ln4 M +∆s4

)
(37)

for (yi, sn) ∈ D2M
2 . Eliminating the terms O(M−2) and ∆s2 from (36) and

(37), the required result is achieved.

Theorem 6 (Error after extrapolation in DM
2 ). Let Zextp be the extrapo-

lated solution (by technique (15)) for solving (11) on D2
M and D2M

2 . Let z
be the solution to (1). Assume that ε < M−2. Then we have the following
error bound associated with Zextp :
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∣∣∣ ≤ C

(
M−4 ln4 M +∆s4

)
for 1 ≤ i ≤ M − 1.

Proof. We have∣∣∣∣∣z(yi, sn)− Zextp(yi, sn)

∣∣∣∣∣ ≤
∣∣∣∣∣wr(yi, sn)−Wrextp(yi, sn)

∣∣∣∣∣
+

∣∣∣∣∣ws(yi, sn)−Wsextp(yi, sn)

∣∣∣∣∣
for all (yi, sn) ∈ DM

2 . Combining Lemmas 4 and 7, we can get the required
result.

Remark 1. The error bound on B-S-mesh in DM
2 is∣∣∣z(yi, sn)− Zextp(yi, sn)

∣∣∣ ≤ C
(
M−4 +∆s4

)
for 1 ≤ i ≤ M − 1.

Remark 2.(Error after extrapolation in DM ) Let Zextp be the extrapo-
lated solution (by technique (15)) for solving (11) on D2

M and D2M
2 . Let z

be the solution to (1). Then we have the following error bound on S-mesh:∣∣∣z(yi, sn)− Zextp(yi, sn)
∣∣∣ ≤ C

(
M−4 ln4 M +∆s2

)
for 1 ≤ i ≤ M − 1,

similarly, on B-S-mesh∣∣∣z(yi, sn)− Zextp(yi, sn)
∣∣∣ ≤ C

(
M−4 +∆s4

)
for 1 ≤ i ≤ M − 1.

5 Numerical experiments

The proposed scheme (10) is tested on two test problems in this section. In
this section, all the numerical results are obtained using MATLAB software
in 64 GB RAM workstation.

Example 1. Consider
zs − εzyy + 0.5z = −2e−1z(y, s− 1) + f(y, s), (x, t) ∈ (0, 1)× (0, 2],

z(y, s) = e−s+y/
√
ε + e−s+(1−y)/

√
ε, (y, s) ∈ [0, 1]× [−1, 0],

z(0, s) = e−s + e−s+1/
√
ε, z(1, s) = e−s+1/

√
ε + e−s, s ∈ [0, 2].

(38)

The exact solution for Example 1 is z(y, s) = e−s+y/
√
ε + e−s+(1−y)/

√
ε.

The maximum pointwise error before and after extrapolation given by

EM,∆s
ε = max

(yi, sn)∈DM
|z(yi, sn)− ZM,∆s(yi, sn)|
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and
EM,∆s

ε = max
(yi, sn)∈DM

|z(yi, sn)− ZM,∆s
extp (yi, sn)|.

The corresponding order of convergence is PM,∆s
ε = log2

(
EM,∆s

ε

E
2M,∆s/2
ε

)
. Here,

z(yi, sn) is the exact solution and ZM,∆s(yi, sn) and ZM,∆s
extp (yi, sn) are the

numerical solutions before and after extrapolation, respectively.

Example 2. Consider the test problem:
zs − εzyy +

(1 + y)2

2
z = s3 − z(y, s− 1), (y, s) ∈ (0, 1)× (0, 2],

z(y, s) = 0, (y, s) ∈ [0, 1]× [−1, 0],
z(0, s) = 0, z(1, s) = 0, s ∈ [0, 2].

(39)

Since the exact solution to (2) is not known, we use the idea of double
mesh principle to obtain the pointwise errors and to verify the ε-uniform
convergence. Define Z̃(yi, sn) as the numerical solution obtained on D̃2M =

Π̃2M
y × Π̃2N

s with 2M mesh intervals in space and 2N mesh intervals in the
s-direction, where Π̃2M

y is the Shishkin-type mesh as defined ΠM
y with the

fixed transition parameter. For each ε, we calculate the maximum pointwise
error before and after extrapolation by ÊM,∆s

ε = max
(yi, sn)∈DM

|ZM,∆s(yi, sn)−

Z̃M,∆s(yi, sn)| and ÊM,∆s
ε = max

(yi, sn)∈DM
|ZM,∆s

extp (yi, sn) − Z̃M,∆s
extp (yi, sn)|,

respectively. The corresponding order of convergence is obtained by P̂M,∆s
ε =

log2

(
ÊM,∆s

ε

Ê
2M,∆s/2
ε

)
. Here, Z̃M,∆s

extp (yi, sn) is the extrapolation solution obtained

by the double mesh principle.
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Figure 1: Surface plots of the computed solution on S-mesh for Example 1.
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Figure 2: Solution plots of each time on S-mesh for Example 1.
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Figure 3: Error graphs of the computed solution on B-S mesh for Example 1.
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Figure 4: Surface plots of the computed solution on S-mesh for Example 2.

10
1

10
2

10
3

N

10
-5

10
-4

10
-3

10
-2

10
-1

M
a

x
x
 E

rr
o

r

10
1

10
2

10
3

N

10
-15

10
-10

10
-5

10
0

M
a

x
x
 E

rr
o

r

(a) Before extrapolation. (b) After extrapolation.

Figure 9: Log-log plots on B-S mesh for Example 2.
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Figure 5: Solution plots on S-mesh for Example 2.

(a) Before extrapolation. (b) After extrapolation.

Figure 6: Log-log plots on S-mesh for Example 1.

(a) Before extrapolation. (b) After extrapolation.

Figure 7: Log-log plots on B-S mesh for Example 1.
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(a) Before extrapolation. (b) After extrapolation.

Figure 8: Log-log plots on S-mesh for Example 2.

Table 1: EM,∆s
ε and PM,∆s

ε generated on S-mesh using the proposed method for
Example 1.

M/∆s Extrapolation 1e-4 1e-6
Singular layer Regular layer Singular layer Regular layer

32/10 before 1.15e-2 6.42e-4 1.15e-2 6.42e-4
1.47 2.13 1.47 2.13

after 3.09e-4 1.52e-6 3.09e-4 1.52e-6
2.72 3.56 2.72 3.56

64/40 before 4.15e-3 1.46e-4 4.15e-3 1.46e-4
1.56 2.25 1.56 2.25

after 1.33e-6 1.10e-7 1.33e-6 1.10e-7
3.05 3.78 3.05 3.78

128/160 before 1.40e-3 3.07e-5 1.40e-3 3.07e-5
1.65 2.38 1.65 2.38

after 5.61e-6 9.33e-9 5.61e-6 9.33e-9
3.22 3.89 3.22 3.89

256/640 before 4.46e-4 5.90e-6 4.46e-4 5.90e-6
1.68 2.48 1.68 2.48

after 6.01e-7 6.28e-10 6.00e-7 6.28e-10
3.34 4.27 3.34 4.27

512/2560 before 1.38e-4 1.05e-6 1.38e-4 1.05e-6

after 5.91e-8 3.25e-11 5.91e-8 3.25e-11
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Table 2: EM,∆s
ε and PM,∆s

ε generated on B-S-mesh using the proposed method for
Example 1.

ε Extrapolation Number of intervals M
32/10 64/40 128/160 256/640 512/2560

1e− 6 before 4.9562e-3 1.3618e-3 3.4560e-4 8.6895e-5 2.1776e-5
1.8637 1.9783 1.9918 1.9965

after 5.3442e-4 4.4861e-5 3.0539e-6 1.9448e-7 1.2234e-8
3.5744 3.8767 3.9730 3.9906

1e− 8 before 4.9562e-3 1.3618e-3 3.4560e-4 8.6895e-5 2.1776e-5
1.8637 1.9783 1.9918 1.9965

after 5.3442e-4 4.4861e-5 3.0539e-6 1.9448e-7 1.2234e-8
3.5744 3.8767 3.9730 3.9906

1e− 12 before 4.9562e-3 1.3618e-3 3.4560e-4 8.6895e-5 2.1776e-5
1.8637 1.9783 1.9918 1.9965

after 5.3442e-4 4.4861e-5 3.0539e-6 1.9448e-7 1.2234e-8
3.5744 3.8767 3.9730 3.9906

Table 3: ÊM,∆s
ε and P̂M,∆s

ε generated on S-mesh using the proposed method for
Example 2.

N/∆s Extrapolation 1e-4 1e-6 1e-8
Inner layer Outer layer Inner layer Outer layer Inner layer Outer layer

32/10 before 9.021e-3 2.800e-3 9.021e-3 3.100e-3 9.021e-3 3.100e-3
1.633 2.001 1.418 2.015 1.418 2.015

after 1.850e-5 6.976e-6 3.344e-4 7.103e-6 3.344e-4 7.103e-6
3.788 3.982 2.704 3.970 2.704 3.970

64/40 before 2.907e-3 7.068e-4 3.374e-3 7.669e-4 3.374e-3 7.669e-4
1.911 2.001 1.528 2.000 1.528 2.000

after 1.339e-6 4.414e-7 5.132e-5 4.530e-7 5.132e-5 4.530e-7
3.878 4.06 3.037 3.925 3.037 3.925

128/160 before 7.729e-4 1.765e-4 1.169e-3 1.917e-4 1.169e-3 1.917e-4
1.418 2.002 1.633 2.000 1.6337 2.000

after 9.108e-8 2.631e-8 6.249e-6 2.981e-8 6.249e-6 2.981e-8
3.949 4.024 3.489 4.011 3.489 4.011

256/640 before 1.959e-4 4.404e-5 3.979e-4 4.793e-5 3.979e-4 4.793e-5
1.980 2.010 1.655 2.000 1.655 2.000

after 5.897e-9 1.617e-9 5.565e-7 1.848e-9 5.565e-7 1.848e-9
3.974 4.162 3.920 4.291 3.920 4.291

512/2560 before 4.909e-5 1.093e-5 1.263e-4 1.198e-5 1.263e-4 1.198e-5

after 3.752e-10 1.778e-11 3.675e-8 9.440e-11 3.675e-8 9.440e-11
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Table 4: ÊM,∆s
ε and P̂M,∆s

ε generated on B-S-mesh using the proposed method for
Example 2.

ε Extrapolation Number of intervals M
32/10 64/40 128/160 256/640 512/2560

1e− 6 before 1.3012e-2 3.5208e-3 9.2402e-4 2.3350e-4 5.8667e-5
1.8859 1.9299 1.9845 1.9928

after 5.4243e-4 4.6020e-5 3.1547e-6 2.0324e-7 1.2801e-8
3.5591 3.8667 3.9562 3.9889

1e− 8 before 1.3012e-2 3.5208e-3 9.2402e-4 2.3350e-4 5.8667e-5
1.8859 1.9299 1.9845 1.9928

after 5.4243e-4 4.6020e-5 3.1547e-6 2.0324e-7 1.2801e-8
3.5591 3.8667 3.9562 3.9889

1e− 12 before 1.3012e-2 3.5208e-3 9.2402e-4 2.3350e-4 5.8667e-5
1.8859 1.9299 1.9845 1.9928

after 5.4243e-4 4.6020e-5 3.1547e-6 2.0324e-7 1.2801e-8
3.5591 3.8667 3.9562 3.9889

The surface plots are plotted for ε = 10−2 and ε = 10−6 in Figure 1 for
Example 1 and Figure 4 for Example 2 on S-mesh, respectively. Figures 2 and
5 display the solution for different values ε with respect to time for Example
1 and Example 2, respectively. From these figures, one can visualize that the
boundary layers appear at y = 0 and y = 1. The error plots are given in
Figure 3 for Example 1 on the B-S mesh before and after extrapolation. These
graphs show that the error is less after extrapolation compared to before
extrapolation. To see the numerical convergence rate graphically, EM,∆s

ε are
plotted in the log-log scale before extrapolation in Figures 6(a), 7(a),8(a), and
9(a) and after extrapolation in Figures 6(b), 7(b),8(b), and 9(b). Moreover,
EM,∆s

ε and PM,∆s
ε by the proposed scheme for Example 1 are presented in

Tables 1 and 2 on S-mesh and B-S-mesh, respectively. Similar results for
Example 2 are shown in Tables 3 and 4. From these tables, one can conclude
that B-S-meshes are more accurate, and the rate of convergence is more
compared to the S-mesh. One can notice that the numerical results are well
by our theoretical findings.
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