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G.K. Ranjbar* and M.E. Samei

Abstract

Using the approximate endpoint property, we describe a technique for exist-
ing solutions of the fractional g-differential inclusion with boundary value
conditions on multifunctions. For this, we use an approximate endpoint
result on multifunctions. Also, we give an example to elaborate on our
results and to present the obtained results by fractional calculus.
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1 Introduction

Fractional calculus and g-calculus are some of the significant branches in
mathematical analysis. The field of fractional calculus has countless applica-
tions (for instance, consider [2, 10, 32]). Similarly, the subject of fractional
differential equations ranges from the theoretical views of the existence and
uniqueness of solutions to analytical methods (for more details, see [4, 5]).
There has been intensive development in fractional differential equations and
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inclusion (for example, see [9, 13, 38, 36, 35, 37, 29, 20, 34]). Also, great
attention was devoted to the fractional differential inclusions (for more in-
formation, see [4, 7, 12, 30, 40]). For finding more details about elementary
notions and definitions of fractional differential equations one can study, for
instance, [6, 26, 31].

In this article, motivated by [8, 33] and among these achievements, we try
to stretch out the problem in a sense for the fractional g-differential inclusions
with integral boundary conditions, in conformity with the definition of the
fractional Caputo type g-derivative of order o and the fractional Riemann—
Liouville type g-integral. We state the basic definitions and some properties
of fractional g-differential inclusion from [18]. For this purpose, we consider
and discuss the inclusion problem

‘Dyu(t) € W (t,u(t),u'(t),u"(t)), (1)

under conditions u(0) + u(p) + u(1) = fol fo(s,u(s))ds and
{ “DEu(0) + “Dlu(p) + DEu(1) = f%l f1(s,u(s)) ds, -
‘Du(0) 4+ ‘DY u(p) + “DJu(l) = [, f2(s,u(s))ds,

where a € (2,3], 0 < ¢,p,8<1,v€ (1,2), fi : JXR = R for i = 1,2,3,
are continuous functions, W : J x R* — P,(R) is a multifunction, and
C]Dqﬂ is the fractional Caputo type g-derivative for t € J = [0,1]. The set
of all compact subsets of R is denoted by P.,(R). Also, we look into the
existence of solutions for the fractional ¢-differential inclusion problem on
the multifunction W : J x R"™t — P(R),

‘Doult) € W (¢, u(t), ‘DY u(t), ..., DI u(t)), (3)

with conditions

{u’(O) + alu/(l) = Z?:l CIDg’iu(p)v (4)
u(0) + agu(1) = 31 Tiu(p),

where a € (1,2], 0 < ¢,p,vi <1, a —; € [1,00) for all 1 <i < n,

heren > 1 and t € J =[0,1].

As before, we remind some of the previous works briefly. In 1910, the sub-
ject of g-difference equations was introduced by Jackson [22, 24, 23]. After
that, at the beginning of the last century, studies on g¢-difference equations
have been appeared in many works, especially in [1, 3, 15, 28, 39]. An excel-
lent account in the study of fractional differential and ¢-differential equations
can be found in [21, 25, 26].
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2 Preliminaries

We recall from [14, 25] some basic definitions, notation, and results of ¢-
fractional calculus, which are needed throughout this article. In fact, we
consider the fractional g-calculus on the specific time scale T = R, where
Ty, = {0} U{s: s = soq"}, for a nonnegative integer n, so € R, and ¢ € Jy.
Let a € R. Define [a]; = (1—¢%)/(1—¢q) [24]. The power function (y—z); with
n € Ny is defined by (y — )( " = i é(y—zqk), forn > 1 and (y—z)go) =1,
where y and z are real numbers and Ny := {0}UN [1]. Also, for o € Rand g #
0, we have (y—2)) = v7 [[52, (y—2¢%)/(y—2q°F). If z = 0, then it is clear

that y(”) = y? [11] (Algorlthm 1). The q—demd function is given by I'y (o) =
(1—¢)"=D/(1—q)° ', where o € R\{0, — ..} [24] (Algorithm 2). Note
that, I'q(0 + 1) = [0]4¢(c). The q—derlvatwe of function g is defined by

and D,[g](0) = lim,_,o D,[g](7), which is shown in Algorithm 3 [1]. Further-
more, the higher order q—derlvatlve of a function g is defined by Dy[g](7) =
D, (D7~ [g]](7), for n > 1, where DY[g](T) = g(7) [1]. The q—mtegral of a
functlon g is defined on [0, b] by

Ll = [ a©dg=r0-0 3 dotre)
0 k=0

for 0 < 7 < b, provided the series is absolutely converges [1]. If 7 in [0, 7],
then

T oo
| 0©d = LglT) - Llalr) = (1 - 0) Yo" [Ta(Td") — ralre)]
T k=0
whenever the series exists. The operator I7 is given by I9[g](T) = g(7)

and I7[g)(7) = L [I7~*[g]](7) for n > 1 and g € C([0,7]) [1]. It has been
proved that Dy [L,[g]](7) = g(7) and I;[D,[g]](7) = g(7) — g(0) whenever g is
continuous at 7 = 0 [1]. The fractional Riemann—Liouville type g-integral of
the function g on Jo = (0,1) for 0 > 0 is defined by I)[g]() = g(7) and

17 [o]() = %(0) / " q©) " Vg(e) dyt

for t € Jo [17, 10](Algorithm 4). The Caputo fractional g-derivative of a
function g is defined by
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" T(ll=0) /( —a©) =TI g](€) dgg.  (6)

where t € Jo and ¢ > 0 [17]. It has been proved that I}[I7[g]](T) =
]IZ*"’[g] (7), and Dy [I7[g]](T) = g(7), where o,v > 0 [17]. Algorithm 4 shows
pesudo-code I7 [g](7).

We say a multifunction G': J — P.(R) is measurable whenever for each
real number y, the function ¢t — d(y, G(t)) is measurable [16]. The Pompeiu—
Hausdorff metric Hy: 2% x 2% — [0,00) on a metric space (X, p) is defined
by

H,(A, B) = max { sup p(a, B), sup p(A,b) }

acA beB
where p(A,b) = inf,ca p(a,b) [19]. The set of closed and bounded of X,
and the set of closed subsets of X are denoted by CB(X) and C(X), re-
spectively. In this case, (CB(X), H,) and (C(X), H,) are a metric space
and a generalized metric space, respectively [27]. An element z € X is
called an endpoint of multifunction W : X — 2% whenever Wz = {z} [8].
Also, the multifunction W has the approximate endpoint property whenever
inf,ex sup, ey, p(7,9) = 0 [8]. A function 6 : R — R is called upper semi-
continuous whenever limsup,,_, . #(A,) < 0(A) for all sequence {\,, },>1 with
An — A [8].

Lemma 1. [8] Consider an upper semi-continuous function 6 : [0,00) —
[0,00) such that 0(¢) < ¢t and liminf; (¢t — 6(t)) > 0, for all ¢ > 0. Also,
Assume that (X, p) a complete metric space and that W: X — CB(X) is a
multifunction such that Hg(W(x), W() < 0(p(z,y)), for all z,y € X. Then
W has a unique endpoint if and only if W has the approximate endpoint

property.

3 Main results

Right away, we are ready to state and prove our main results. Foremost, we
make the adjacent one.

Lemma 2. Suppose that v € C(J,R), that o € (2,3], that 0 < 8,q,p < 1,
that v € (1,2), and that f; : J x R — R, for ¢ = 0,1,2, are continuous
functions. The unique solution of the fractional g-differential problem

Deu(t) = v(t), (7)

with conditions (2) is given by
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u(t) = Tgv(t) + 3 ; fo(s,u(s))ds — 3 []qu(l) + ]qu(p)}
1
bart) [ ils,u(s)) s+ aa(®) [150(1) + 13 Pu(p)
0

1
+ (b1 + ag(t))/ g2(s,u(s))ds
0
+ (ba + aq(t)) []Ig‘_%u(l) + Hg_vv(p)] ,
where
3tly(2—B) —(p+ DIy(2 - B)
3P +1) ’
(p+1)Iy(2—B) —3Ly(2 - B)t
3(pt=F +1) ’
—6(p° 7 + 13 = 7)y(2 - B)
6(p'~F + 1)(p*~ ’Y+1)Fq(3 B)
3(p' P + 1)I(B = )Ty (3 = B
6(p'~F + 1)(p*~ 7+1)Fq(3—ﬁ) ’
6(p° 7 + 1)l (3 = 7)Ty(2 = )t
6(p' =7 + 1) (P>~ + 1T(3 - B) .
B0, LG - AP + 1P )
6(p1F + 1)(p* 7 + 1)T4(3 - B)
2(p+ D(P* P + 103 = )y(2 - B)
6(p'=7 + 1) (P>~ + 1)T4(3 - B)
PP+ DL,EB =)@+ DT (B - B)
6(p' P+ (P> + 1T (B-5)
(p2 + 1)Fq(3 - ’Y)(pl_ﬁ + 1)Fq(3 )
6(p' =P + 1)(p>~7 + 1)Ty(3 - B)
20+ )PP+ DT, =T, (2 - B)
6(p' =7 +1)(p*™7 + 1)I'4(3 — B)

ai(t) =

a9 (t) =

t

as(t) =

as(t) =

by =

by =

Proof. As we have known that the general solution of (7) is

1

ult) = Ly(a)

¢
/ (t —qs) @ Vo(s)dys + co + ert + cat?, 9)
0

where ¢; (i =0,1,2) are arbitrary real constants [26, 31, 38]. Thus,
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140
ti=p 2cqt2~ 8
eDiu(t) = 1% Po(t) + —2 T :
R RS Wo R R W)
_ 262t2_7
CDYu(t) = I Vo) 4 —2
ault) =1g U()+Fq(3—7)

Hence, we get

u(0) + u(p) + u(1) = 3¢ + (1 +p)er + (1 4+ p*)ez + T v(1) + I v(p)

and
1-8 2-3
C]Dgu(()) + C]Dqﬁu(p) + C]Dqﬂu(l) =q qu(2 __'—ﬁl) ) 2;2(3 _—;?)
+ ]Ig‘_'@v(l) + ]I;‘_Bv(p),
2~ + 1)
Lq(3=7)
+ 157 70(1) + 15 v (p).

Dyu(0) + “Dyu(p) + ‘Dyz(l) = co

By employing the boundary conditions, we have

3o+ (14 pler + (1 +pP)es = / fols, u(s)) ds
—Tou(1) — T(p),

pF+1 2(p>~8 +1
“T,2-8)  “®T,B- /f ())d

— I3 u(1) = T3~ Pu(p),
2(p*7 1
o= p + / fa(s, z(
Lg(
=I5 7u(1) =I5 "u(p).

This is a linear system of equations of triangular shape, having cg, c1, and ¢y
as unknowns. By a back substitution, we obtain
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/ fo(s,u(s))ds — = [ v(1) +Igv(p)]

2ﬁp+1 f
1ﬁ_|_1 1

(p + NIy(2 - B)
TR

1
+h / fols, u(s)) ds + by [T~ 0(1) + 12 "0(p)]

c1 = 16+ /flsu

[]If;_ﬂv(l) + llf;_ﬂv(p)]

- (p 1(25 _|_ﬁ1) []Ia ? v(1 )"‘]Ia b (Pﬂ
(*~" + DTy (3 = )T
_(p1_5+1)(27+1 /f28u

P> "+ 1)r,B3—yr q(2—6)
(PP +1)(p* + )Ty (3 — B)

co = 27+1/f25u

F(S 'V a—y =y,
—m[ﬂ (1) + I3 o(p)] -

(15~ o(1) + I o(p)]

At once, we replace cg, ¢1, and ¢z in (9) and find the solution u(t) as we
stated. O

Assume that X = C?(J) endowed with the norm

l[ull = sup [u(t)] + sup |u'(£)] + sup [u" (£)].
teJ teJ teJ

Then (X, ||-]|) is a Banach space (see [16]). For u € X, we define the selection
set Sy, by the set of all v € L'(.J) such that v(t) € W(t,u(t), v (t),u"(t))
for all t € J. For the study of problem (1) and (2), we shall consider the
following conditions:

(C1) The multifunction W : J x R® — P.,(R) be is an integrable and
bounded such that W(-,z1,22,23) : J — Pep(R) is measurable for
all z; € R;

(C2) The functions f; : J x R — R be are continuous and map 6 : [0,00) —
[0,00) be a nondecreasing upper semi-continuous such that

liminf(t — 6(t)) > 0

t—o0

and 0(t) < ¢ for all ¢ > 0;
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(C3) There exist m, mg, my1, mg € C(J,[0,00)) such that

Hy (W(tv L1, T2, 33‘3), W(ta x/lv '1:/2a l‘é))

3
1
< - E !
— A+ A -|-A3m(t)0<,€_1|xZ x1|>

and
1

/
B — f. < - .
|fj(ta'1:) fj(tam” — A1+A2—|—A3m]

forallt € J, z,2',2;,z}, € R, where

(O)(jz —2')),

[mlls | lmolls | 2llmll
A =
! [Fq(a+1) LT Y Py
L 5La@ = Blllmulloo | 10T4(2 = B)lImll
3 (e —pB+1)

+10(2T4(2 — B) + T4(3 = B))
Ly(3 =) (Imallocl'y(a = v + 1) + 2] )
X( 8T,(3 — B)Ty(a — 7 + 1) >}
Ao = {”FT:JL‘);’ + ZFqu((i__ﬁ B) |T1H)°° + (2Ty(2 = B) + T4(3 = 8))
Ly(3 =) (ImeallocTg(ar = v + 1) 4+ 2] )
< (s ).
(eI n Ly(3 =) (Imafloclg(a =y + 1) + 2||m||oo)] .
Ty(a—1) Lyla—v+1) ’

|

(C4) Multifunction N : X — 2% is given by
Nuw)={heX|TFve Sy : h(t)=w(t)},
for each t € J, where by applying the notation in (8), we have
wlt) =100+ 5 [ fulo, ) as ~ § [o(1) + B0
+ ax(t) /01 Fi(s,u(s)) ds + ax(t) 177 v(1) + 15~ v (p)]

1
+ (b + ag(t))/o fa(s,u(s))ds
+ (b2 + a4(t)) []Ig‘_"v(l) + ]I;"_Vv(p)] )
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Theorem 1. The boundary value ¢-differential inclusion problem (1) and (2)
has a solution, whenever the multifunction N : X — P(X) has the approxi-
mate endpoint property and conditions (C1)—(C4) are hold.

Proof. We demonstrate that the multifunction N has an endpoint, which
is a solution of the problem (1) and (2). Because the multivalued map
t B Wt u(t),u (t),u”(t)) is measurable and so has closed values, it has
measurable selection and so Syy ,, is nonempty for all v € X. At present, we
show that N(u) C X is closed for u € X. Let u € X and let {x,},>1 be a
sequence in N (u) with u,, — z. For each n € N, choose v,, € Syy,, such that

T, (1) = Tgv, (1) + é /0 fo(s,u(s))ds — % [Ivn (1) 4+ I v (p)]

+an(t) /O Fi(s,us)) ds + as(t) [12Pu,(1) + 120, (p)]

1
+ (b1 + ag(t))/ fa(s,u(s))ds
0
+ (b2 + aq(t)) [T v (1) + I3 on(p)] -
It is noteworthy that {v,},>1 has a subsequence that converges to some v €
L'(J), because W has compact values. Again, we denote this subsequence

by {vn}n>1. It is easy to go over that v € Sy, and z,(t) tends to z(t),
where

(1) = To(t) + /1 Fols,u(s)) ds — — [I20(1) + I%u(p)]
— g 3 Jo 0% 3 L4 q\P
1
+an(t) /O Fi(s, u(s)) ds + as(t) [I2u(1) + 12~Bo(p)]
1
+ (b + ag(t))/ fa(s,u(s))ds
0
+ (b2 + aa(t)) [Ig 0 (1)Ig ™ (p)]
for each t € J. This implies that © € N(u) and so N has closed values. Since

W is a compact multivalued map, it is easy to check that N(u) is a bounded
set for all u € X. Now, we show that

Ha(N (u), N(v)) < 0(|lu—vl]).

Let u,v € X and let hy € N(v). Choose wy € Sy, such that
hi(t) = Iwy(t) + 3 fo(s,v(s))ds — 3 [Igwi (1) 4 Ty ws (p)]
0

1
o) / f1(5,0(5)) ds + as(t) [I2~Pun (1) + I8P, (p)]
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+ (b + ag(t))/o Fols, v(s)) ds
+ (bz + G4(t)) []Ig_'ywl(l) + ]Ig‘_'ywl (p)] y

for almost all ¢t € J. Put

Wiy = W (tu(t),u/ (), u”(8), Wy =W (t,0(t), o' (t),0" (1))
Since

- . 1
< -
Hgq (Wu(t)awv(t)) = +A2+A3m(t)

x 0 (Ju(t) —n(t)] +[u'(t) =" ()] + [« (t) =" (®)]),
for all t € J, there exists w € Wu(t) such that

;m(t)
A4+ Ay + Az

x 0 (Ju(t) —v(t)| + [u'(t) = v'(1)]
+u"(t) =" (®)])

for all t € J. Consider the multivalued map G : J — P(R), which defines
the set of all w € R such that w satisfies in (10). Since w; and

lwi(t) —w| <
(10)

1
— mb(lu — r no_on
o =mb(u—vl+ 10 =]+ 1 =) | |

are measurable, the multifunction
GOW Cul) ' (), 4" (),
is measurable. Choose wa(t) € W (¢, u(t),u'(¢), v (t)) such that
|wi () — wa(t)]

S ;m(t)
A+ Ao+ As
x P (Ju(t) —o()] + [u'(t) — V' ()] + [u"(t) =" (B)]),

for all t € J. Now, Consider the element hy € N(u), which is defined by
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ha(t) = Town(t) / fols,u(s ))ds—f [T wn (1) + Twn(p)]
+ aq(t) / fi(s,u(s))ds + as(t) []I;“_'@wg(l) + ]I;“_ng(p)]
0

1
+ (b + ag(t))/o fa(s,u(s))ds
+ (b2 + aa(t)) [Tg T wa(1) + I wa(p)]

for all t € J. Thus,
|h1(t) — ha(t)] < 15 |wi (t) — wa(t)]
/ [fols,0(5)) — fols,u(s))] ds

3[11”’|w1(> wa (1)1 s (p) — wa(p)] ]

e |/|flsv — fi(s,u(s))| s

+ Jaz(£)] 197 P wy (1) — wa(1)]
+]I?_'6|w1(29) — ws(p)|]

1
+ [by + as(t) |/ fals, 0(s)) — fals,u(s))] ds

+ b2 + as(t)] [IIO‘ Vw1 (1) — we(1)|ds
g™ [wi(p) — wa(p)| ds]
1 [mllse Mol
§A4+A2+A39wu_vm{rga+1)+ 3
2mllee  5Tq(2 = B)lImalloc
ly(a+1) 3
100 (2 — B)[|m ||
y(a—B+1)
+10(204(2 = B) + T4 (3 - B))
X<H@—7WWMHIAG—7+D+2WNmU]
3LyB = B)lgla—v+1)

+

= m¢(”“ —vl)),

[R5 (t) = hy(1)] < T~ Hws (t) — wa(t)

P@=B) 1081y (1) — wa(1))

_|_
(p=F+1)
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+Ig~ wi (p) — wa(p)|]

ms|/dhsv ~ fals, u(s))] ds

+ [as ()] [Ig ™7 w1 (1) — w2(1)|
+Ig77™ 1|w1( ) — wa(p)

|:||m||oo A)llm o

0(lu—v]) a—ﬁ+U

A1 +A2 + As
+ (20g(2 = B8) +T4(3 = B))

(3 )Wmﬂm Jla =7+ 1)+ 2ms)
X( T,(3— B)lqla—7 + 1) ”

= mﬁ(llu —vl)),

and
WY (t) = hy(t)] <TG~ 2le( t) — wa(t)]

/Ihsv — fols, u(s))] ds

2 g +1
F a3~ rja—y

+ (pz_,y_’_ 1) [ q |U}1( )_w2(1)|
+I2 7 Jwy (p) — wa(p)|]

1 [l o

< st o [y
+Fq(3 =) (Imalleclg(a =7+ 1) + 2||m|[o0)
Lyla—v+1)
Az

= m¢(”“ —vl)),

where

(P*~7 + 1T4(3 — 1)Te(2 — B)

50 = B D)2 + )Ty B)
L,B3=@'""+ 1,3 -H)t
(PP +1)(p* 7+ 103 - B)’

aﬁ(t) _ (p2_ﬂ + 1)Fq(3 - 'V)Pq(2 - 5)

P+ + )03 - BT (e — )
Ly —7)(3—B)(p' 7+ 1)t
PP+ 1> + T3 — B)lg(a—7)

Hence,
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[h1 = hal = sup |h1 () — ha(t)] + sup [l (£) — ha(t)]
teJ teJ

+sup Ry (t) — 15 (1))
teJ
1

< _ _ — .
S AH_AzJFA39(||m Yl (A1 + Ag 4 Az) = 0(||lz — yl|)

Therefore, it is easy to get that
Hq(N(u), N(v)) < 0(|lu— ),

for all u,v € X. On the other hand, the multifunction /N has the approximate
endpoint property. By using Lemma 1, there exists u* € X such that N(u*) =
{u*}. Thus, by employing Lemma 2, u* is a solution of problem (1) and (2).

O

At present, we investigate the existence of a solution for the fractional g-
differential inclusion problem with integral boundary value conditions

‘Doult) € W (¢, u(t), ‘DY u(t), ..., DI u(t)),
W' (0) + a1/ (1) = >0, “Dyiu(p), (11)
u(0) + apu(1) = 357, Iy u(p),

for the multifunction W : J x R"*1 — P(R), where t € J, o € (1,2], n > 2,
0<qg,p,vi<l,a—~y >1foralll <i<n,and

pl_'Yi n

n p’Yi
a>y 0 gy
; Lq(2 =) ; Lo(vi +2)

4 Examples and algorithms for the problems

In this part, we give a complete computational technique for solving prob-
lems (1) and (2), such that it covers all the problems and presents numerical
examples solving perfect. To this aim, we consider a pseudo-code description
of the method for the calculated ¢-Gamma function of order n in Algorithm 2
(for more details, see the link https://en.wikipedia.org/wiki/Q-gamma_
function).

Table 1 shows that when ¢ is constant, the ¢-Gamma function is an in-
creasing function. Also, for smaller values of x, an approximate result is
obtained with a fewer values of n. It has been shown by underlined rows.
Table 2 shows that the ¢-Gamma function for values ¢ near one is obtained
with more values of n in comparison with other columns. They have been
underlined in line 8 of the first column, line 17 of the second column, and
line 29 of the third column of Table 2. Also, Table 3 is the same as Table 2,
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but z values increase in Table 3. Similarly, the ¢-Gamma function for values
g near to one is obtained with more values of n in comparison with other
columns. Furthermore, we provide Algorithm 3 that calculates (Dg f)(x).
Here, we give an example to illustrate our first main result, which applies to
the different values ¢ in Theorem 1.

Example 1. Counsider the fractional g-differential inclusion problem

9 t2 1
c]D;Z u(t) € [ 100 sinu(t) + Tog S8 ¢ "(t) )
A0
100 \ 1+ |u"(t)| )|’
under the integral boundary conditions
3 b2
u(0) + U(Z) +u(l) = /0 5 08 u(s)ds
and
2 2 3 2 1 532*1
‘D u(0) + Dy u(3) 4+ Diu(l) = [, “55— cosu(s)ds, (13)
5 5 5
‘D u(0) + ‘D u(2) + D u(l) = fol % cosu(s)ds,

wheret € J=1[0,1,a=2,8=2,7v=3, andp= 2 in (1) and (2). Consider

the map W : J x R? — P(R) defined by

Wt )= 0, — e b - 23|
X1, T, X3) = sinx Ccos T — .
b2t 1007 P 100 72T 100 \ 1 4 |

Also, fi : J x R — R are define by

2 t°—1 243 11
folt,w) = o5 cosw, filtw) = S cosw, foftw) = S

and N : C2(J) — 29°(D) is defined by
N(u) = {h € C2(J) ‘ Ju € Sy.u : h(t) = w(t)},

for all ¢t € J such that

% Llys .03
w(t) =1 / — cos u( s—g []qu(l)—l—]lqv(zl)}
e 21

cosu(s)ds + az(t) [1[;90(1) +]L§9U(i)}



Using approximate endpoint property on existing solutions for ... 149

+ (b aa(0) [1F0() + T o)
where
a _ 3Fq(%)t_ %Fq(%)
SR (T T
a _ %Fq(%) _3Pq(%)t
O @iy
(1) = “8UDF + DTAITA @)+ 33 + VLT ()
) = 3)3 33 7 ’
6((3)F + (D + 1T, (5) ”
o B+ DL (T3 = L, (O, () + 12
aa(t) = 13 33 7 ’
6((5)F + D + 1Ty (5)
b B+ DD = ()2 + DL + DTy (5)
1 6((3)% + 1)((3)F + ry(%) ’
, (2 DO +1Ty(5) = 5D + DL (H(D)
’ 6((3)% + 1)((3)% + Dry(D)

Put m(t) = 35, mo(t) = L5, mi(t) = S55—, ma(t) = 252, and ¥(t) =
Then, we have

Tl Imolle | 2l ST()lmalloe . 100, (2)m]uo
A‘[m(lf)* 3 a0,(3) 3 TWEY
, 100,(3) + Ty (2) (ImalloTa(33) + 2] )}

34 (3)e(13) ’
I, ()l
[ WES
+<2F <§>+rq<§>> o(3) (ImallcTy(22) + 2fmiloc )}
(D)L, (2) ’
[mfe rq<%>(||m2||oo 2(32) 4 2o )]
S eI r,(9) |

In following data of Tables 4 and 5, it is easy to check that

3
Hd(W(tﬂ Uy, U2, Ug),F(t7U1,U2,U3)) < A1—|—A12—|—A3m(t)9(z |uk — Uk|)

and that



150 Ranjbar and Samei

1
|fi(tu) = fi(tv)] < mmj(t)l/)ﬂu —|),

fort € J, j =0,1,2. Because sup,c () |[ul = 0, we have

inf su u—uvl|[| =0.
ueC?(J) [veNI()u) | ”}

Thus, N has the approximate endpoint property. At present, by applying
Theorem 1, the system of fractional ¢-differential inclusions (12) and (13) has
at least one solution.

5 Conclusion

The g¢-differential boundary equations and their applications represent a mat-
ter of high interest in the area of fractional g-calculus and its applications in
various areas of science and technology. ¢-differential boundary value prob-
lems occur in the mathematical modeling of a variety of physical operations.
The end of this article was to investigate a complicated case by utilizing
an appropriate basic theory. In this manner, we proved the existence of a
solution for familiar problems of g-differential equations under three bound-
ary conditions (1)—(2) and (3)—(4) on a time scale and showed the perfect
numerical effects for the problem, which confirm our results.
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Supporting informations

Table 1: Some numerical results for calculation of T'q(x) with ¢ = % that is constant,
x=4.5,8.4,12.7and n =1,2,...,15 of Algorithm 2.

r=4.5 r =384 r=12.7 n x=45 r =284 xr=12.7

2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2.383247 11.468397  65.559266 10 2.340250 11.257095 64.351003
2.354446  11.326853 64.749894 11 2.340245 11.257074 64.350881
2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
2.341815 11.264786  64.394980 13 2.340243 11.257064 64.350828
2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
2.340418  11.257921 64.355725 15 2.340243 11.257063 64.350822
2.340301 11.257349 64.352456

00~ O ULk w3
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Table 2: Some numerical results for calculation of Iy(z) with ¢ = %, %, %, z =5 and
n=1,2,...,35 of Algorithm 2.

n__4=3 d=; g=5 n  4=35 4=3 d=3
1 3.0165635 6.291859 18.937427 18  2.853224 4.921884 8.476643
2 2906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707  9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107  9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853295 4.930899 8.833940 25  2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747
10 2.853232 4.924129 8.629588 27 2.853224 4.921875 8.470667
11 2.853226  4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438 8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14  2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15  2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522
17 2.853224 4.921893 8.479713 34 2.853224 4.921875 8.470517
Table 3: Some numerical results for calculation of Tq(x) with z = 8.4, ¢ = %, %, % and
n=1,2,...,40 of Algorithm 2.
n =3 q=3 =3 n =3 q=3 q=3
1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378  259.969903
10 11.257095 49.089202  265.756606 30 11.257063 49.065378  259.969044
11 11.257074  49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378  259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14  11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751  260.469369 36 11.257063 49.065378 259.967478
17 11.257063  49.065564  260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471  260.190310 38 11.257063 49.065378 259.967394
19  11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378  259.967357
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Table 4: Some numerical results of I'q(a) in Example 1 with different values of ¢ by
Algorithm 2.

n]a=3 a=3 a=f a=8 a=? a=I o= 4=-B
=3
1| 1.1174 0.9592 0.9559 0.9673 1.1055 1.1315 1.2199 1.5327
2 |1 1.1311 0.9505 0.9448 0.9500 1.0747 1.0990 1.1824 1.4805
3| 1.1356 0.9476 0.9411 0.9444 1.0647 1.0886 1.1703 1.4638
4 | 1.1371 0.9467 0.9400 0.9425 1.0615 1.0851 1.1664 1.4583
5| 1.1376 0.9464 0.9396 0.9419 1.0604 1.0840 1.1651 1.4564
6 | 1.1377 0.9463 0.9394 0.9417 1.0600 1.0836 1.1646 1.4558
71 1.1378 0.9462 0.9394 0.9417 1.0599 1.0835 1.1645 1.4556
8 | 1.1378 0.9462 0.9394 0.9416 1.0599 1.0834 1.1644 1.4556
9| 1.1378 0.9462 0.9394 0.9416 1.0598 1.0834 1.1644 1.4555
10 | 1.1378 0.9462 0.9394 0.9416 1.0598 1.0834 1.1644 1.4555
=3
1| 1.1069 0.9743 09772 1.0122 1.2620 1.3087 1.4715 2.1039
2 | 1.1377 0.9526 0.9493 0.9662 1.1655 1.2049 1.3437 1.8906
3| 1.1522 0.9426 0.9364 0.9453 1.1221 1.1583 1.2865 1.7960
4 | 1.1593 0.9378 0.9302 0.9353 1.1015 1.1362 1.2594 1.7514
51 1.1628 0.9355 0.9272 0.9303 1.0915 1.1254 1.2463 1.7297
6 | 1.1645 0.9343 0.9257 0.9279 1.0865 1.1201 1.2398 1.7190
71 1.1654 0.9337 0.9249 0.9267 1.0841 1.1175 1.2365 1.7137
8 | 1.1658 0.9334 0.9245 0.9261 1.0828 1.1161 1.2349 1.7111
9| 1.1660 0.9333 0.9244 0.9258 1.0822 1.1155 1.2341 1.7098
10 | 1.1662 0.9332 0.9243 0.9257 1.0819 1.1152 1.2337 1.7091
=3
1] 0.9665 1.1206 1.1787 1.4118 2.6441 2.8906 3.8168 8.5184
2|1 1.0284 1.0602 1.0963 1.2516 2.1063 2.2761 2.9085 6.0237
3| 1.0710 1.0218 1.0443 1.1539 1.8020 1.9312 2.4107 4.7288
4 | 1.1018 0.9954 1.0091 1.0891 1.6109 1.7160 2.1053 3.9658
51 1.1248 0.9766 0.9840 1.0438 1.4826 1.5723 1.9040 3.4780
6 | 1.1421 0.9628 0.9657 1.0111 1.3927 1.4718 1.7646 3.1483
7 | 1.1555 0.9523 0.9519 0.9868 1.3275 1.3992 1.6647 2.9162
8 | 1.1659 0.9444 0.9414 0.9685 1.2793 1.3455 1.5913 2.7481
9 | 1.1740 0.9383 0.9334 0.9545 1.2429 1.3051 1.5363 2.6235
10 | 1.1803 0.9335 0.9271 0.9436 1.2151 1.2743 1.4945 2.5297
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Table 5: Some numerical results of A1, Az, and Az in Example 1 with different values
of q.

nl A A A g
I
1| 3.3364 1.17%3 0.4559 0.2013
2 | 3.3955 1.1988 0.4592 0.1979
3| 34147 1.2061 0.4602 0.1968
4| 3.4219 1.2088 0.4606 0.1964
5| 3.4240 1.2096 0.4608 0.1963
6 | 3.4244 1.2098 0.4608 0.1963
7| 34246 12099 04608  0.1963
8 | 3.4251 1.2101 0.4608 0.1962
9 | 3.4251 1.2101 0.4608 0.1962
10 | 3.4251 1.2101 0.4608 0.1962
¢=3
1| 2.9820 1.0480 0.4467 0.2234
2 | 3.1379 1.1076 0.4552 0.2127
3| 3.2160 1.1375 0.4593 0.2078
4 | 3.2553 1.1525 0.4613 0.2054
5| 3.2754 1.1601 0.4623 0.2042
6 | 3.2852 1.1639 0.4628 0.2036
7| 3.2898 1.1656 0.4630 0.2033
8 1 3.2923 1.1666 0.4631 0.2032
9 | 3.2939 1.1671 0.4632 0.2031
10 | 3.2943 1.1673 0.4632 0.2031
q=3
1] 18371 0.6109 0.3881 0.3526
2 | 2.0805 0.7071 0.4077 0.3130
3 | 2.2800 0.7853 0.4216 0.2868
4 | 24430 0.8488 0.4319 0.2686
5 | 2.5751 0.9001 0.4395 0.2554
6| 26823 09415 04454  0.2457
7 | 2.7686 0.9748 0.4499 0.2385
8 | 2.8380 1.0016 0.4534 0.2329
9 | 2.8943 1.0232 0.4562 0.2286
10 | 2.9392 1.0404 0.4584 0.2253
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Algorithm 1 The proposed method for calculated (a — b))

Input: a, b, a, n, ¢

1: s« 1

2: if n = 0 then

3 p+1

4: else

5. for k=0 ton do

6: s+ s*(a—bxa¥)/(a—bxqg*tF)
7. end for

8 p+a®xs

9: end if

Output: (a — b)(®

Algorithm 2 The proposed method for calculated I'q(z)

Input: n, g € (0,1), x € R\{0,-1,2,...}
1 p+1
2: for k=0ton do
3 pep(l—g" (1 —g"™h)
4: end for
Ty(x) < p/(1—q)**
Output: I'y(z)

ot

Algorithm 3 The proposed method for calculated (Dgf)(x)
Input: ¢ € (0,1), f(z),
1: syms z
if x =0 then
g tim((£(2) — (g 2))/(1 - 9)2), 2,0)
else
g (f(z) = flgx2))/((1 - q)x)
end if
Output: (D,f)(z)

Algorithm 4 The proposed method for calculated (IS f)(x)

Input: ¢ € (0,1), a, n, f(z),
1: s+ 0
: fori=0tondo
pf — (1 _ qi-‘rl)a—l
s+ s+pfxqg* flrx*q)
end for
g (2 (1 )5 5)/(Ty())
Output: (I f)(z)

@ gk wN




