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New S-ROCK methods for stochastic
differential equations with

commutative noise

A. Haghighi∗

Abstract

The class of strong stochastic Runge–Kutta (SRK) methods for stochas-
tic differential equations with a commutative noise proposed by Rößler (2010)
is considered. Motivated by Komori and Burrage (2013), we design a class of

explicit stochastic orthogonal Runge–Kutta Chebyshev (SROCKC2) meth-
ods of strong order one for the approximation of the solution of Itô SDEs
with an m-dimensional commutative noise.The mean-square and asymptotic

stability analysis of the newly proposed methods applied to a scalar linear
test equation with a multiplicative noise is presented. Finally, some numer-
ical experiments for stochastic models arising in applications are given that
confirm the theoretical discussion.

Keywords: Stochastic differential equations; Runge–Kutta methods; Stochas-
tic mean square stability, Stiff equations; Commutative noise.

1 Introduction

Stochastic differential equations (SDEs) arise in a variety of applied mathe-
matics and physics areas; see [4,22]. Such equations are the results of adding
random fluctuations in the parameters of a system of ordinary differential
equations (ODEs). In the literature, there are plenty of work devoted to the
study of stochastic differential calculus; see [10,12]. However, in many cases,
the analytical solutions of such SDEs are not known; this makes numerical
methods as very important tools for solving SDEs, which have been consid-
ered by many researchers. For solving different forms of SDEs, many efficient
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numerical methods have been constructed, for example, [6, 12, 16, 23]. Espe-
cially, SRK methods are an important derivative free class of numerical meth-
ods, which are proposed for strong approximations of SDEs; see [5, 15, 17].
In 2010, Rößler [19,20] introduced a new class of SRK methods in which the
number of stages does not depend on the dimension, m, of the Wiener pro-
cess. On the other hand, the stability of numerical methods for SDEs is an
essential factor in order to avoid possible explosion. Generally, the implicit
methods have a wider range of acceptable step sizes compared to explicit ones,
which makes them suitable for the solution of stiff systems; see [7, 8, 12, 24].
However, the implementation of implicit methods demands to solve a nonlin-
ear system of equations per step, which may increase the computational cost
significantly in the case of high dimensional SDEs. Therefore, explicit meth-
ods with extended stability regions could greatly help to solve stiff SDEs. In
this regard, Abdulle et al. proposed two classes of explicit stochastic orthog-
onal Runge–Kutta Chebyshev (SROCK) methods of strong order 1/2 for
SDEs in Stratonovich [1] and Itô [2] sense. Recently, Komori et al. in [14],
constructed explicit strong SRK methods (SROCKD1 and SROCKD2) of
order one for SDEs in Itô and Stratonovich sense. These methods are de-
signed for approximation of SDEs with noncommutative noises. As we know,
double stochastic integrals must be used in methods of strong order one for
the approximation of the solution of a SDE with a noncommutative noise;
see [12, 13]. Such an expensive computational cost can be reduced when the
SDE has a single Wiener process or has a commutative noise. It should be
noted, such SDEs can be used for modeling a variety of nonlinear physical
systems; see [12]. In this article, the SRK methods of [20] for the strong
approximation of SDEs with a commutative noise is briefly reviewed. Then,
motivated by [14], a new class of SROCK methods of strong order one for
the approximation of the solution of SDEs with an m-dimensional commu-
tative noise is proposed. The mean-square stability (MS-stability) functions
for the new proposed methods, applied to a scalar linear test equations with
a multiplicative noise, are determined, and in some special cases, the regions
of MS-stability and T-stability are compared between our proposed methods
and the scalar test equation.

Consider the autonomous SDE of the Itô type in the form of

dX(t) = a(X(t))dt+ b(X(t))dWt, X(t0) = X0, t ∈ [t0, T ]. (1)

Here, X(t) ∈ Rd, a : [t0, T ]×Rd → Rd, is a drift vector, b = (b1, b2, . . . , bm) :
[t0, T ] × Rd → Rd×m is a diffusion matrix, and W (t) is an m-dimensional
standard Wiener process defined on probability space (Ω,F , P ) with the fil-
tration {Ft}t∈[t0,T ], which satisfies the usual conditions. It is assumed, X0 is
Ft0 -measurable and independent of the Wiener process with E|X0|2 < ∞,
where |.| denotes the Euclidean norm. Suppose that the conditions of the ex-
istence and uniqueness theorem [12] are fulfilled for SDE (1). For simplicity
in this paper, the equidistant discretization ph = {t0, t1, . . . , tN = T} of the
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time interval [t0, T ] with tn = t0 + nh, where h = T−t0
N for n = 0, 1, . . . , N ,

has been considered. Also, for an equidistant grid point tn ∈ ph, the notation
yn denotes a discrete approximation to the solution X(tn) of (1).

In the following, the SDE (1) is considered with a commutative noise, in
the other words, the diffusion matrix b satisfies the commutativity condition

d∑
i=1

bi,r
∂bk,s

∂xi
(t, x) =

d∑
i=1

bi,s
∂bk,r

∂xi
(t, x), (2)

for all r, s = 1, . . . ,m, k = 1, . . . , d, and (t, x) ∈ [t0, T ]× Rd.

Definition 1 (see [12, 20]). A discrete time approximation yh is said to be
convergent with the strong order α to the solution X of SDE (1) at time tn,
if there exist constants C > 0 and δ0 > 0 such that, for each h ∈ (0, δ0),(

E|X(tn)− yhn|2
) 1

2 ≤ Chα. (3)

The constants C and δ0 are independent of h.

The outline of the paper is as follows: In Section 2, we will introduce
second order Chebyshev methods proposed by Abdulle and Medovikov in [3]
for ODEs. In Section 3, we introduce the class of SRK methods proposed
by Rößler in [20] for the strong approximation of SDEs with a commutative
noise. Then, we introduce a new class of methods of strong order one for the
approximation of the solution of Itô SDEs with an m-dimensional commuta-
tive noise. In Section 4, a brief overview of the stochastic stability concepts of
SDEs is presented. We also analyze the MS-stability and T-stability proper-
ties of the newly proposed method on a linear scalar SDE. In Section 5, some
numerical results for stochastic models arising in applications are provided
to confirm theoretical discussions.

2 Chebyshev methods of order two for ODEs

Consider the autonomous d-dimensional ODE system X ′(t) = a(X(t)) with
the initial condition X(t0) = y0. The s-stage explicit deterministic Runge–
Kutta (RK) method for solving this system corresponding to step-size h is
as follows:

yn+1 = yn + h
s∑

i=1

αia(H
(0)
i ), (4)

where

H
(0)
i = yn + h

i−1∑
j=1

aija(H
(0)
j ), 1 ≤ i ≤ s.



G
al
le
y
P
ro
of

108 A. Haghighi

Applying (4) to the scalar test equation yields

X ′(t) = λX(t), t > 0, y(0) = y0, (5)

where R(λ) < 0 and y0 ̸= 0, we have yn+1 = Rs(λh)yn. Here, Rs(z) is
called a stability function. Consequently, the stability region of (4) can be
expressed as

RS = {z ∈ C : |Rs(z)| ≤ 1}. (6)

Riha [18] showed that the polynomial

Rs(z) = 1 + z +
z2

2
+

s∑
j=3

csjz
j , csj ∈ R,

exists such that |Rs(z)| ≤ 1 for z ∈ [−ls, 0] with ls as large as possible. It
is desirable in practice to replace |Rs(z)| ≤ 1 by |Rs(z)| ≤ η ≤ 1 (damping).
Abdulle et al. in [3] constructed approximations to these optimal stability
polynomials. In this approach, at first for a given η (damping factor) and
s (stage value), the values as and ls and also the polynomial w̄(x) of the
degree two with complex zeros αs ± βs which satisfies w̄(as) = 1, are cal-
culated. Then, the orthogonal polynomials {Q̄j(x)}s−2

j=0 with respect to the

weight function w̄(x)√
1−x2

on [−1, 1] are constructed in which Q̄j(as) = 1 for

j = 0, 1, . . . , s− 2. Finally, the approximation of optimal stability polynomi-
als is constructed as

Rs(x) := w(x)Qs−2(x), (7)

where w(x) := w̄(as+x/ds) with ds =
ls

1+as
> 0 and Qj(x) := Q̄j(as+x/ds)

for j = 0, 1, . . . , s − 2. For more details, you can refer to [3]. The polyno-
mials Q0(x), Q1(x), . . . , Qs−2(x) satisfy in the below three-term recurrence
relations as form

Q0(z) = 1, Q1(z) = 1 + µ1z, (8)

Qj(z) = (µjz + κj + 1)Qj−1(z)− κjQj−2(z),

for j = 1, . . . , s− 2. The values of µj and κj can be determined by inserting
the different suitable values r1, r2 ∈ R\{0} in (8) and solving the nonsingular
linear system

(µjri + κj + 1)Qj−1(ri)− κjQj−2(ri) = Qj(ri), i = 1, 2.

Abdulle et al. in [3], corresponding to stability polynomial (7), con-
structed the second order explicit RK method {yk}k≥0 for the approximation
of the solution of the deterministic system X ′(t) = a(X(t)). The mentioned
method is implemented in a code called ROCK2 as below:

H
(0)
1 = yn,
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H
(0)
2 = yn + hµ1a(H

(0)
1 ),

H
(0)
j+1 = hµja(H

(0)
j ) + (κj + 1)H

(0)
j − κjH

(0)
j−1, 2 ≤ j ≤ s− 2,

H(0)
s = H

(0)
s−1 + hθsa(H

(0)
s−1),

yn+1 = H(0)
s + hθsa(H

(0)
s )− hθs(1−

τs
θ2s

)(a(H(0)
s )− a(H

(0)
s−1)), (9)

where the parameters θs and τs satisfy in the relation w(x) = 1+2θsx+τsx
2.

3 SRK methods for SDEs with a commutative noise

In this section, we will review the SRK method introduced by Rößler in [20]
for the strong approximation of Itô SDEs with m-dimensional commutative
noise. In this class, the SRK method is given by y0 = X0 and

yn+1 = yn +

s∑
i=1

αia(tn + c
(0)
i hn, H

(0)
i )hn

+
s∑

i=1

m∑
k=1

(β
(1)
i I(k),n + β

(2)
i

√
hn)b

k(tn + c
(1)
i hn, H

(k)
i ), (10)

for n = 0, 1, 2, . . . , with stage-values

H
(0)
i = yn +

s∑
j=1

A
(0)
ij a(tn + c

(0)
j hn,H

(0)
j )hn +

s∑
j=1

m∑
l=1

B
(0)
ij bl(tn + c

(1)
j h,H

(l)
j )I(l),n,

H
(k)
i = yn +

s∑
j=1

A
(1)
ij a(tn + c

(0)
j hn,H

(0)
j )hn −

s∑
j=1

B
(1)
ij bk(tn + c

(1)
j hn,H

(k)
j )

√
hn

2

+

s∑
j=1

m∑
l=1

B
(1)
ij bl(tn + c

(1)
j hn,H

(l)
j )

I(k),nI(l),n

2
√
hn

,

for i = 1, . . . , s and k = 1, . . . ,m. The random variables of the method are
defined by the stochastic Itô integrals

I(k),n = W k(tn + h)−W k(tn) =

∫ tn+h

tn

dW k
s .

Since the random variables of the method (10) are only increments of the
Wiener process and the simulation of the multiple stochastic integrals is not
required any more, the computational cost will be reduced significantly.
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Table 1: Butcher tableau for the SRK methods SRIC1 (left) and SRIC2 (right)

0
0 0 0
0 0 0 0 0
0
0 0 1
0 0 0 -1

1 0 0 1 0 0
0 1

2 −1
2

0
0 1 0
0 0 0 0 0
0
1 1 1
1 1 0 -1

1
2

1
2 0 1 0 0

0 1
2 − 1

2

In the following, let Cp,q([t0, T ]×Rd,Rd) denote the space of all mappings
from [t0, T ] × Rd to Rd, which are p and q times continuously differentiable
with respect to the time and the state variables, respectively.

Remark 1. Frequently, the coefficients of the SRK method (10) are shown
by the following Butcher tableau :

c(0) A(0) B(0)

c(1) A(1) B(1)

αT β(1)T

β(2)T

Theorem 1 (Order conditions). Let a, bj ∈ C1,2([t0, T ] × Rd,R) for j =
1, . . . ,m. Then, the SRK method (10) obtains the strong order 0.5 for ap-
proximation of the solution of (1), if its coefficients satisfy in the equations

1. αT e = 1, 2. β(1)T e = 1, 3. β(2)T e = 0.

In addition, suppose a, bj ∈ C1,3([t0, T ]× Rd,R) for j = 1, . . . ,m. Then, the
SRK method (10) obtains the strong order 1.0, if the equations

4. β(2)TA(1)e = 0, 5. β(2)T (B(1)B(1)e) = 0,

6. β(1)TB(1)e = 0 7. β(2)T (B(1)e)2 = 0, 8. β(2)TB(1)e = 1,

are fulfilled with c(i) = A(i)e for i = 1, 2.

Proof. see [20].

To date, suggestions have been presented for the coefficients of SRK
method (10). As an example, Rößler in [20] purposed three stages of
SRK methods SRIC1 and SRIC2 with orders (pD, pS) = (1.0, 1.0) and
(pD, pS) = (2.0, 1.0), respectively, in which pD is the order of the method
related to ODEs, that is, b ≡ 0 and pS is the order of the method related to
SDEs; see Table 1.
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Remark 2. In the rest of the paper, we set B(0) = 0 and

B(1) =


0 · · · 0 0 0
... · · ·

...
...
...

0 · · · 0 0 0
0 · · · 1 0 0
0 · · · −1 0 0


s×s

, β(1) =



0
...
0
1
0
0


s×1

, β(2) =



0
...
0
0
1
2

−1
2


s×1

, (11)

therefore, the equations 2. and 3. as well as the equations 5.–8. in Theorem
1 are satisfied.

3.1 A new class of Chebyshev methods for SDEs

In this section, motivated by Komori et al. [14], we introduce a new class of
s-stage explicit stochastic orthogonal Runge–Kutta Chebyshev method for
Itô SDEs with a commutative noise. We denote this method by SROCKC2,
which has the orders (pD, pS) = (2.0, 1.0).

For the strong approximation of the solution of SDE (1) with a commu-
tative noise, the s-stage (s ≥ 2) SROCKC2 method is given by y0 = X0

and

yn+1 = H
(0)
s+1 +

s∑
i=1

m∑
k=1

(β
(1)
i I(k),n + β

(2)
i

√
hn)b

k(tn + c
(1)
i hn,H

(k)
i ), (12)

with stage values

H
(0)
1 = yn, H

(0)
2 = yn + hµ1a(H

(0)
1 ),

H
(0)
j+1 = hµja(H

(0)
j ) + (κj + 1)H

(0)
j − κjH

(0)
j−1, 2 ≤ j ≤ s− 2,

H(0)
s = H

(0)
s−1 + hθsa(H

(0)
s−1),

H
(0)
s+1 = H(0)

s + hθsa(H
(0)
s )− hθs(1−

τs
θ2s

)(a(H(0)
s )− a(H

(0)
s−1)),

H
(k)
i = Yn +

s∑
j=1

A
(1)
ij a(H

(0)
j )hn −

s∑
j=1

B
(1)
ij bk(H

(k)
j )

√
hn

2

+
s∑

j=1

m∑
l=1

B
(1)
ij bl(H

(l)
j )

I(k),nI(l),n

2
√
hn

,

where µj and κj ( j = 1, . . . , s − 2) as well as θs and τs are free parameters
in R, which are in accordance with the second method ROCK2 in (9); see [3]
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for more details. In addition, B(0), B(1), β(1) and β(2) would be defined as
previously mentioned in relation (11).

Remark 3. We note that in the deterministic case, b ≡ 0, the method (12)
coincides with the second order ROCK2 method, introduced in (9). There-

fore, assuming yn +
∑s

i=1 αia(H
(0)
i ) = H

(0)
s+1 from second order properties of

the ROCK2 method, we have
∑s

i=1 αi = 1, and the equation 1. in Theorem
1 is satisfied.

4 Stability properties

In this section, we will first investigate the MS-stability of our proposed
methods and compare them with the MS-stability regions of the methods
SRIC1 and SRIC2 in [20]. Then, the T-stability properties of the proposed
schemes on a scalar linear test equation with a multiplicative noise have
been analyzed. In this regard, we first review the MS-stability analysis of the
methods SRIC1 and SRIC2 on the linear test problem with the multiplicative
noise

dX(t) = λX(t)dt+ µX(t)dWt, λ, µ ∈ C, (13)

with the deterministic initial condition X(t0) = y0 ∈ R\{0}. For λ, µ ∈ C,
the solution of (13), X(t) = y0exp{(λ − 1

2µ
2)(t − t0) + µ(Wt − Wt0)}, is

stochastically asymptotically stable in the large if and only if

limt→∞ |X(t)| = 0 ⇔ ℜ(λ− 1
2µ

2) < 0. (14)

Also, the equilibrium position of SDE (13) is asymptotically MS-stable if and
only if

limt→∞ E(|X(t)|2) = 0 ⇔ 2ℜ(λ) + |µ|2 < 0, (15)

for λ, µ ∈ C; see [12]. It worth mentioning, MS-stability always results in
asymptotically stability in the large due to inequality ℜ(2λ− µ2) ≤ 2ℜ(λ) +
|µ|2.

Here, we are going to find conditions in which the SRIC1 and SRIC2
methods, on the scalar test equation (13), have numerically stable solutions.
For every λ, µ ∈ C a numerical method applied on the test equation (13) is
numerically asymptotically stable and MS-stable, respectively, if and only if
limn→∞ |yn| = 0 (with probability 1) and limn→∞ E(|yn|2) = 0. To deter-
mine the domain of asymptotic stability of a numerical method, we recall the
following lemma from [9].

Lemma 1. For a given sequence of real-valued, nonnegative, independent,
and identically distributed random variables {Rn(h, λ, µ)yn}∞n=0. Consider
the sequence of random variable {|yn|}∞n=0 defined by yn+1 = Rn(h, λ, µ)yn
and |y0| ≠ 0 (w.p.1). If the random variables log(|Rn(h, λ, µ)|) are square
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integrable, then

limn→∞ |yn| = 0 ⇔ E
(
log(|Rn(h, λ, µ)|

)
< 0. (16)

So the domain of asymptotic stability of a numerical method can be ex-
pressed as

RAS = {λ, µ ∈ C : E
(
log(|Rn(h, λ, µ)|

)
< 0}.

Set a1 := 1 + x − y2

2 and a2 := 1 + x + 1
2x

2 − y2

2 , where x = hλ and

y = µ
√
h. Applying SRIC1 and SRIC2 methods on the scalar test equation

(13), respectively, we have

yn+1 =
(
aj +

I(1),n√
h

y +
I2(1),n

2h
y2
)
yn, j = 1, 2. (17)

Here, we find the forms

yn+1 = Rj
n(x, y)yn, j = 1, 2,

for (17), and the MS-stability functions of the methods SRIC1 and SRIC2
will be given, respectively, by

E(|yn+1|2) = R̂j
n(x, y)E(|yn|2), j = 1, 2.

Obviously, for λ, µ ∈ C and h > 0, the methods SRIC1 and SRIC2 are MS-
stable, if R̂j

n(x, y) < 1 for j = 1, 2. So, the domain of MS-stability of SRIC1
and SRIC2 methods can be expressed, respectively, as

Rj
MS = {λ, µ ∈ C : R̂j

n(x, y) < 1}, j = 1, 2.

Because of better visualization of the regions R1
MS and R2

MS in the x − y
plane, the restriction λ, µ ∈ R is considered. So, one can express the MS-
stability function of the SRIC1 and SRIC2 methods, respectively, as

R̂j(x, y) = a2j + y2 +
3

4
y4 + y2aj , j = 1, 2.

It should be noted that all the following figures, demonstrating regions of MS-
stability for the numerical methods under consideration, are plotted, using
the Mathematica software. Figure 1 gives the MS-stability regions of the
methods SRIC1 and SRIC2. The light gray area shows the MS-stability
region of the test equation (13) and the dark gray area shows the MS-stability
regions of the methods. Comparison of the illustrated regions in Figure 1
shows that the SRIC1 and SRIC2 methods have small regions of MS-stability.



G
al
le
y
P
ro
of

114 A. Haghighi

-10 -8 -6 -4 -2 0
0

2

4

6

8

10

x

y

-10 -8 -6 -4 -2 0
0

2

4

6

8

10

x

y

Figure 1: MS-stability region for the test equation (13) (light grey surface) and SRK
methods (dark grey surface) (left) SRIC1, (right) SRIC2.

4.1 MS-stability analysis of SROCKC2

Consider the method (12), for simplification similar to [14], we set all com-
ponents of A(1) as zero except

A
(1)
s−2,j = A

(1)
s−1,j = A

(1)
s,j = A

(0)
s−1,j , 1 ≤ j ≤ s− 2,

where A(0) is an s×s strictly lower triangular matrix which could be obtained
from the following equation:

H
(0)
i = yn +

i−1∑
j=1

A
(0)
i,j a(H

(0)
j−1)

for i = 1, . . . , s. Clearly, from the definition of A(1), the equation 4. in
Theorem 1 is satisfied.

Now, suppose that Rs(x) = w(x)Qs−2(x) is the stability polynomial of
the s-stage deterministic method ROCKD2 (9) with parameter η; see [3].
When the method (12) is applied to the test equation (13), we find the forms
yn+1 := Rs(h, λ, µ,∆Wn)yn, where

Rs(h, λ, µ,∆Wn) =
(
w(λh) + ∆Wnµ+

1

2
[∆Wn]

2µ2 − 1

2
hµ2

)
Qs−2(λh).

Applying the expectation operator and according to the properties of
standard normal distribution in the terms of x and y, we have

E
(
|Rs(x, y)|2

)
=
(
w(x)2 + y2 +

y4

2

)
[Qs−2(x)]

2.

Therefore, the mean square stability regions of the methods SROCKC2 is
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Figure 2: Profile of the MS-stability regions of the SROCKC2 schemes for some special
values of η and s.

RMS = {(x, y) ∈ R2 : E
[
|Rs(x, y)|2

]
< 1}. (18)

For more clear results concerning the MS-stability regions of SROCKC2
schemes, in the following, we confine our investigation to some optimal values
of η and s, which have been suggested by [14]. The regions of MS-stability
for SROCKC2 schemes with different values of η and s (dark gray area) are
illustrated in Figure 2. We can see in Figure 2 that the MS-stability region of
methods SROCKC2 is larger than the methods SRIC1 and SRIC2. In what
follows, SROCKC2 scheme with three stages (η = 0.4), six stages (η = 0.375),
and nine stages (η = 0.3) are denoted by SROCKC2 − 3, SROCKC2 − 6,
and SROCKC2− 9, respectively.

4.2 T-stability analysis of SROCKC2

To measure the asymptotic stability of a numerical method with respect to
the driving process, Saito and Mitsui established the definition of T-stability
in [21].
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Figure 3: Profile of the T-stability regions of the SROCKC2 schemes for some optimal

values of η and s.

Definition 2. Assume that the test equation (13) is stochastically asymp-
totically stable in the large. The numerical scheme equipped with a specified
driving process said to be T-stable if limn→∞ |yn| = 0 holds for the driving
process.

It can be deduced that the criterion of T-stability depends both on the
scheme and the driving process. Accordingly, similar to the approach, which
is used by Lemma 1, the criterion of T-stability of a numerical method with
respect to normal random variables can express as

log T (h, λ, µ) =
1√
2π

∫ +∞

−∞

(
log(|Rn(h, λ, µ)|e−

1
2 z

2

dz
)
< 0. (19)

It seems it is not so simple to find the closed form of (19). Thus, we use
the MATLAB software to approximate the integral in (19). The integral
interval (−∞,+∞) is approximated by [−50, 50] because of the magnitude
of the integrand in (19) becomes sufficiently small when |z| > 50. In Figure
3, the regions of T-stability for SROCKC2 schemes with different values of
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Figure 4: Profile of the T-stability regions of the methods SRIC1 (left) and SRIC2 (right).

η and s (dark gray area) have been illustrated. Similarly, the regions of
T-stability for the methods SRIC1, SRIC2, Milstein and Platen (light gray
area) are depicted in Figures 4 and 5. Comparison of the illustrated regions
confirms that the proposed methods have reasonably larger regions of both
MS-stability and T-stability.

5 Numerical experiments

In this section, we apply some optimal cases of SROCKC2 schemes (12) on
some examples of Itô stochastic differential equations that arising in applica-
tions. These examples illustrate the efficiency of the new proposed methods.

Denote y
(i)
N and X(i)(tN ) as the numerical solutions and the exact solution

at step point tN in ith simulation, respectively. The root mean square er-
ror (RMSE) is used by simulating 1000 independent trajectories for a given
step-size h as bellow:

RMSE :=

(
1

1000

1000∑
i=1

∣∣∣X(i)(tN )− y
(i)
N

∣∣∣2) 1
2

.

We also investigate computational costs for a given h to measure accuracy
of proposed methods. In simulation results, the number of evaluations of
the drift function a, of the diffusion function b, and the number of random
numbers to be generated in every step is taken as measure of computational
costs (Sa). In the following, we will compare the methods SROCKC2-3,
SROCKC2-6, and SROCKC2-9 with some popular methods, including Euler-
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Figure 5: Profile of the T-stability regions of the methods Milstein (left) and Platen
(right).

Table 2: A least squares fit for the parameters C and α, for problem 1 with λ = 1, µ = 1
Xt0 = 1

SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC1

α 1.0514 1.0597 1.0615 1.0207 1.0109 1.0109
log(C) 1.8067 1.7033 1.6803 2.0750 2.2317 2.2317

Maruyama [12], Milstein [16], SRIC1 and SRIC2 [20], and also the method
proposed by Platen [12].

Problem 1: The first problem is the scalar test equation (13) that is
considered on I = [0, 1] with the initial condition Xt0 = 1. For this setting,
the simulation results are presented in Figure 6. In this figure, RSME versus
step size of the methods are illustrated at T = 1. It is clearly seen in Figure
6 that the slopes of curves appear to match well and (3) for α = 1 is valid.
Further, with assumption RSME ≈ Chα for some constants C and α, we
can write

log(RSME) ≈ log(C) + α log(h). (20)

In Table 2, a least squares fit for the parameters C and α are calculated,
respectively. These results confirm that the proposed methods have a con-
vergence with order 1 in mean square sense. Also, in Table 3, the RMSE for
time steps h = 2−9, . . . , 2−5 are computed.
As a further aspect of providing comparisons of the computational efficiency
of the proposed methods, ratio CPU times of the methods SROCKC2, Mil-
stein, Platen, and SRIC2 to the running time of the method SRIC1 are cal-
culated in Table 4. It can be deduced from Table 4 that the CPU time of the
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Figure 6: RMSE versus step size for test problem 1.

Table 3: Means of absolute errors, RMSE, for problem 1

h SROCKC2-3 SROCKC2-3 SROCKC2-3 Platen Milstein SRIC2

2−5 0.150 0.131 0.127 0.223 0.271 0.271

2−6 0.082 0.072 0.070 0.121 0.145 0.145

2−7 0.037 0.032 0.031 0.056 0.069 0.068
2−8 0.017 0.015 0.014 0.027 0.035 0.034

2−9 0.008 0.007 0.007 0.013 0.017 0.016

method SROCKC2-3 and SRIC2 are approximately similar to the method
SRIC1.

In following, because we do not know exact solutions to problems, refer-
ence solutions have been simulated with the Milstein scheme [16] based on
the step size h = 2−13.
Problem 2: The second problem is a chemical reaction model [12]. The
mathematical model is

dx1(t) =
(
c1x1(t)− c2x1(t)(x1(t)− 1) + 2c3x2(t))

)
dt

+x1(t)
(
α1dW

1
t + α2dW

2
t

)
,

dx2(t) =
(c2
2
x1(t)(x1(t)− 1)− c3x2(t)− c4x2(t))

)
dt

+x2(t)
(
β1dW

1
t + β2dW

2
t

)
.

The system parameters take the values c1 = c2 = 200, c3 = 100, and
c4 = 100 while the stochastic coefficients are α1 = α2 = 5 and β1 = β2 = 0.5.
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Table 4: Ratio CPU times of the proposed methods to the running time of the method
SRIC1, for problem 1 with λ = 1, µ = 1 Xt0 = 1 at T = 1

h SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC2

20 0.842 1.736 2.157 0.115 0.105 0.473
2−1 1.346 1.846 3.891 0.269 0.262 1.000

2−2 0.957 2.015 3.723 0.414 0.106 1.063

2−3 0.970 2.000 3.303 0.284 0.176 0.961

2−4 0.984 2.035 3.533 0.329 0.203 1.011

2−5 1.032 2.060 3.486 0.319 0.151 1.001

2−6 0.995 1.949 3.212 0.386 0.239 1.022

Table 5: A least squares fit for the parameters C and α, for problem 2

SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC1

α 0.7247 0.7237 0.6993 1.5669 1.4207 0.8303
log(C) 8.5043 8.3181 7.9808 19.5330 17.8396 10.1329

Table 6: Means of absolute errors, RMSE, for problem 2

h SROCKC2-3 SROCKC2-3 SROCKC2-3 SRIC2 Milstein Euler Platen

0.01 × 2−9 unst. 1.17 1.21 unst. unst. unst. unst.
0.01 × 2−10 0.86 0.91 0.92 unst. unst. unst. unst.
0.01 × 2−11 0.71 0.60 0.58 0.98 1.72 unst. 1.58
0.01 × 2−12 0.41 0.34 0.33 0.55 0.51 0.51 0.41
0.01 × 2−13 0.26 0.22 0.22 0.31 0.24 0.24 0.18

Table 7: Ratio CPU times of the proposed methods to the running time of the method
SRIC1, for problem 2

h SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC2

0.01× 2−6 1.066 1.333 1.600 0.733 0.667 0.933
0.01× 2−7 0.935 1.225 1.581 0.709 0.645 0.967
0.01× 2−8 1.034 1.310 1.672 0.706 0.689 1.034
0.01× 2−9 1.008 1.288 1.661 0.711 0.678 1.016
0.01× 2−10 0.991 1.287 1.665 0.707 0.671 1.042
0.01× 2−11 1.006 1.319 1.696 0.724 0.698 1.002
0.01× 2−12 1.004 1.304 1.685 0.719 0.691 1.000
0.01× 2−13 1.007 1.314 1.684 0.730 0.699 1.009
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Figure 7: RMSE versus step size (left) and RMSE versus computational cost (right) with
double logarithmic (ld) measures for test problem 2.

Table 8: A least squares fit for the parameters C and α, for problem 3

SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC1

α 0.5454 0.5715 0.5244 1.4623 1.3736 1.4243
log(C) 0.6772 0.8068 0.5372 6.7938 6.2749 6.5723

The initial conditions are x1(0) = 1000 and x2(0) = 100, and the integration
is performed on the interval [0, 0.01]. The results are indicated in Figure 7
and Tables 5–7. Table 5 shows that although all mentioned methods have
same slope values, α, but the values of C, for the methods SROCKC2-3,
SROCKC2-6, and SROCKC2-9 are much less that other methods. Also, from
Table 6, it can be deduced that the methods SROCKC2-6 and SROCKC2-9
are MS-stable for step sizes h ≤ 7.81×10−5 and h ≤ 1.56×10−4. Clearly, the
simulation results suggest proposed methods as the most efficient methods
with respect to the root mean-square errors and computational costs. Also,
the evolution of the x1(t) and x2(t) is given in Figure 8.

Problem 3: The third problem is Marine bacteriophage infection
model, which is a stiff SDEs; see [11]. The mathematical model is

ds(t) =
(
as(t)(1− (i(t) + s(t)))− s(t)p(t)

)
dt+ σ1

(
s(t)− s∗

)
dW 1

t ,

di(t) =
(
s(t)p(t)− ℓi(t)

)
dt+ σ2

(
i(t)− i∗

)
dW 2

t , (21)

dp(t) =
(
−s(t)p(t)−mp(t) + bℓi(t)

)
dt− σ3

(
p(t)− p∗

)
dW 3

t ,
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Figure 8: Problem 2: The functions x1(t) and x2(t) averaged over 1000 discretized
Brownian paths and along 40 individual paths with the SROCKC2-6 method with h =
0.01× 2−8.

Table 9: Means of absolute errors, RMSE, for problem 3

h SROCKC2-3 SROCKC2-3 SROCKC2-3 SRIC1 Milstein Euler Platen

5× 2−5 unst. 0.353 0.351 unst. unst. unst. unst.
5× 2−6 0.354 0.350 0.344 unst. unst. unst. unst.
5× 2−7 0.312 0.311 0.309 unst. unst. unst. unst.
5× 2−8 0.238 0.237 0.235 unst. unst. unst. unst.
5× 2−9 0.162 0.161 0.159 unst. unst. unst. unst.
5× 2−10 0.108 0.107 0.105 0.365 0.355 0.362 0.372
5× 2−11 0.074 0.072 0.073 0.136 0.137 0.133 0.135
5× 2−12 0.055 0.054 0.055 0.039 0.039 0.038 0.039

with the initial condition (s0, i0, p0) = (0.3, 0.2, 5). Here s represents the
susceptible bacteria, i is the infected bacteria, and p is the phage (viruses).
The drift coefficients have the values a = 8.65, ℓ = 24.628, m = 14.925, and
b = 60 while the noise coefficients have the values σ1 = σ2 = σ3 = 0.4 and

s∗ =
m

b− 1
, i∗ =

as∗(1− s∗)
ℓ+ as∗

, p∗ =
aℓ(1− s∗)

ℓ+ as∗
.

In Figure 9, we report the errors versus step size of the methods and errors
versus computational effort with double logarithmic (ld) measures on the in-
terval [0, 5]. Also, Figure 9 illustrates the reduction in computational effort
of methods SROCKC2-3, SROCKC2-6, and SROCKC2-9 in the same level of
accuracy. Clearly, the simulation results in Tables 8–10 suggest the proposed
methods as the most efficient methods with respect to root mean-square er-
rors and computational costs. The evolution of the three interacting species
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with double logarithmic (ld) measures for test problem 3.

Table 10: Ratio CPU times of the proposed methods to the running time of the method
SRIC1, for problem 3

h SROCKC2-3 SROCKC2-6 SROCKC2-9 Platen Milstein SRIC2

5 × 2−5 1.200 1.600 3.000 0.400 0.401 1.200

5 × 2−6 0.909 1.545 2.454 0.363 0.181 1.000
5 × 2−7 1.001 1.476 2.428 0.381 0.285 1.095

5 × 2−8 1.024 1.561 2.243 0.390 0.268 1.048

5 × 2−9 0.964 1.511 2.178 0.392 0.272 1.023

5 × 2−10 1.189 1.561 2.298 0.445 0.274 1.158

5 × 2−11 0.972 1.413 2.011 0.356 0.263 1.087

5 × 2−12 0.952 1.384 2.158 0.371 0.267 1.069

is given in Figure 10.

6 Conclusions

In this paper, the class of strong stochastic Runge–Kutta methods for stochas-
tic differential equations with commutative noise due to Rößler (2010) is
considered. For stiff SDEs, a family of explicit stochastic orthogonal Runge–
Kutta Chebyshev methods of strong order one for the approximation of the
solution of Itô SDEs with m-dimensional commutative noise are designed.
The mean-square and asymptotic stability of newly proposed methods ap-
plied to a scalar linear test equation with multiplicative noise have been an-
alyzed. Some numerical results for stochastic models arising in applications
are provided to confirm theoretical discussions. In future works, we will con-
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Figure 10: Problem 3: The functions s(t), i(t), and p(t) averaged over 1000 discretized
Brownian paths and along 40 individual paths with the SROCKC2-6 method with h =
5× 2−8.

sider constructing methods with higher strong global convergence orders and
better stability properties.
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Math. Sci. 6(4) (2008), 845–868.

3. Abdulle, A. and Medovikov, A. Second order Chebyshev methods based on
orthogonal polynomials, Numer. Math. 90 (2001), 1–18.

4. Burrage, K., Burrage, P. and Tian, T. Numerical methods for strong solu-
tions of stochastic differential equations: an overview, Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 460(2041) (2004), 373–402.



G
al
le
y
P
ro
of

Title Suppressed Due to Excessive Length 125

5. Burrage, K. and Burrage, P.M. General order conditions for stochastic
Runge–Kutta methods for both commuting and non-commuting stochastic
ordinary differential equation systems, Appl. Numer. Math. 28 (1998),
161–177.

6. Falsone, G. Stochastic differential calculus for Gaussian and non-Gaussian
noises: A critical review, Commum. Nonlinear. Sci. 56 (2018), 198–216.

7. Haghighi, A. and Hosseini, S.M. A class of split-step balanced methods
for stiff stochastic differential equations, Numer. Algorithms. 61 (2012),
141–162.

8. Haghighi, A., Hosseini, S.M. and Rößler, A. Diagonally drift-implicit
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جابجایی نویز با تصادفی دیفرانسیل معادلات حل برای جدید S-ROCK روش های

حقیقی امیر

ریاضی گروه علوم، دانشکده رازی، دانشگاه

١٣٩٧ مهر ٨ مقاله پذیرش ،١٣٩٧ مرداد ٧ شده اصلاح مقاله دریافت ،١٣٩۶ آذر ٢۴ مقاله دریافت

(٢٠١٠) روسلر توسط شده بیان تصادفی رونگ-کوتای روش های کلاس ابتدا مقاله، این در : چکیده
ایده از استفاده با سپس، می شود. گرفته نظر در جابجایی نویز با تصادفی دیفرانسیل معادلات حل برای
صریح متعامد تصادفی رونگ-کوتای روش های از کلاس یک ،(٢٠١٣) کُموری و برج توسط شده بیان
جابجایی نویز با ایتو تصادفی دیفرانسیل معادلات جواب تقریب برای یک قوی مرتبه ی از (SROCKC٢)
اسکالر معادله ی یک روی پیشنهادی روش های مجانبی و مربعی میانگین پایداری ادامه، در می گردد. طراحی
شبیه سازی از حاصل عددی نتایج ارائه با انتها، در می گیرد. قرار تحلیل مورد ضربی نویز با آزمون خطی

گرفت. خواهد قرار تایید مورد شده بیان مطالب کاربردی تصادفی مدل های برخی

معادلات مربعی؛ میانگین پایداری رونگ-کوتا؛ روش های تصادفی؛ دیفرانسیل معادلات : کلیدی کلمات
جابجایی. نویز سخت؛
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