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Abstract

In this article, we find a priori and a posteriori error estimates of the
fixed point for the Picard iteration associated with a noncyclic contraction
map, which is defined on a uniformly convex Banach space with a modulus
of convexity of power type. As a result, we obtain priori and posteriori
error estimates of Zlatanov for approximating the best proximity points of
cyclic contraction maps on this type of space.
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1 Introduction

A basic result in fixed point theory is the Banach contraction principle. Fixed
point theory is an important tool to solve the equation Tx = x for mappings
T is defined on subsets of metric or normed spaces. One of the advantages
of Banach’s fixed point theorem is the estimation of the error of successive
iterations and the rate of convergence. There are equations Tx = x for
which the exact solution is not easy to find or even is not possible to find.
The error estimate is very useful in these cases. An extensive study about
approximations of fixed points for self-maps can be found in [2]. In 2016,
Zlatanov [17] obtained error estimates for approximating the best proximity
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points for cyclic contraction maps as generalization of the Banach contraction
principle. More cases can be found in [10, 11, 16] and references therein.

One other kind of a generalization of the Banach contraction principle
is the notation of noncyclical maps; that is, T : A ∪ B → A ∪ B such that
T (A) ⊆ A and T (B) ⊆ B. Also, a sufficient condition for the existence and
the uniqueness of fixed points in uniformly convex Banach spaces are given
in [15].

In this article, we obtain “a priori error estimates” and “a posteriori error
estimates” for approximating the fixed point of noncyclic contractions. As a
result, we obtain “a priori error estimates” and “a posteriori error estimates”
of Zlatanov for approximating the best proximity point of cyclic contractions.

2 Preliminaries

In this section, we recall some definitions and facts, which will be used here-
after. Let A and B be nonempty subsets of a metric space (X, d). The map
T : A∪B → A∪B is called a noncyclic map if T (A) ⊆ A and T (B) ⊆ B. The
noncyclic map T : A∪B → A∪B is called a noncyclic contraction map if there
holds the inequality d(Tx, Ty) ≤ kd(x, y)+(1−k)d(A,B) for some k ∈ (0, 1)
and all x ∈ A and y ∈ B, where d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}. We
say that (ξ, η) ∈ A × B is an optimal pair of fixed points of the noncyclic
mapping T provided that

Tξ = ξ, Tη = η and d(ξ, η) = d(A,B),

The definition for noncyclic contraction was introduced in [8].
The map T : A ∪ B → A ∪ B is called a cyclic map if T (A) ⊆ B and

T (B) ⊆ A. The cyclic map T : A ∪B → A ∪B is called a cyclic contraction
map if there holds the inequality d(Tx, Ty) ≤ kd(x, y) + (1 − k)d(A,B) for
some k ∈ (0, 1) and all x ∈ A and y ∈ B. A point ξ ∈ A ∪ B is called a
best proximity point for T if d(ξ, T ξ) = d(A,B); see [4, 6, 7] and references
therein. If sets A and B have a nonempty intersection, then every best
proximity point of T is a fixed point of T .
Definition 1. [9] The modulus of convexity of a Banach space X is the
function δX : [0, 2] → [0, 1] defined by

δX(ϵ) = inf
{
1− ∥x+ y

2
∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
.

The norm is called uniformly convex if δX(ϵ) > 0 for all ϵ > 0. The space
(X, ∥.∥) is called a uniformly convex space.

As a result of [15, Lemma 2.2 and Theorem 2.7], we have the next theorem.
Theorem 1. [15] Let A and B be nonempty, closed, and convex subsets
of a uniformly convex Banach space (X, ∥ · ∥) and let T : A ∪ B → A ∪ B
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be a noncyclic contraction map. Then T has a unique optimal pair of fixed
points (ξ, η) such that for every x0 ∈ A and y0 ∈ B the sequences {Tnx0}
and {Tny0} converge to ξ and η, respectively.

Definition 2. [9] A Banach space X is said to be uniformly convex if there
exists a strictly increasing function δ : [0, 2] → [0, 1] such that the following
implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:

∥x− p∥ ≤ R
∥y − p∥ ≤ R
∥x− y∥ ≥ r

 ⇒ ∥x+ y

2
− p∥ ≤

(
1− δ(

r

R
)
)
R. (1)

If (X, ∥ · ∥) is a uniformly convex Banach space, then δX(ϵ) is strictly
increasing function. Therefore if (X, ∥ · ∥) is a uniformly convex Banach
space, then there exists the inverse function δ−1 of the modulus of convexity.
If there exist constants C > 0 and q > 0 such that the inequality δX(ϵ) ≥ Cϵq

holds for every ϵ ∈ (0, 2], then we say that the modulus of convexity is of
power type q. It is well known that the modulus of convexity with respect
to the canonical norm ∥ · ∥p in lp or Lp is of power type, and there holds the
inequalities δX(ϵ) ≥ ϵp

p2p for p ≥ 2 and δX(ϵ) ≥ (p−1)ϵ2

8 for p ∈ (1, 2); see
[13]. An extensive study of the geometry of Banach spaces can be found in
[1, 3, 5].

3 Main results

In this section, we begin with the following lemma as a result of [15, Lemma
2.2], which will be used later.

Lemma 1. Let A and B be nonempty subsets of a metric space (X, d) and
let T : A∪B → A∪B be a noncyclic contraction map. Then, for every x ∈ A
and y ∈ B, there holds the inequality

d(Tnx, Tny)− d(A,B) ≤ kn(d(x, y)− d(A,B)). (2)

In the following result, we obtain our main result in this section.

Theorem 2. Suppose that A and B are nonempty, closed, and convex sub-
sets of a uniformly convex Banach space (X, ∥·∥) such that d := d(A,B) > 0,
and that T : A∪B → A∪B is a noncyclic contraction map. Let δX(ϵ) ≥ Cϵq

for some C > 0, q ≥ 2 and every ϵ ∈ (0, 2]. Then

(i) T has a unique optimal pair of fixed points (ξ, η) ∈ A×B;

(ii) for every x0 ∈ A and y0 ∈ B the sequences {Tnx0} and {Tny0} converge
to ξ and η, respectively;
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(iii) a priori error estimate holds

∥ξ − Tmx0∥ ≤ Mx0,y0

1− q
√
k

q

√
Mx0,y0

− d

Cd
(

q
√
k)m;

(iv) a posteriori error estimate holds

∥Tnx0 − ξ∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn − d

Cd
;

where for every x ∈ A and y ∈ B, Mx,y := max
{
∥x− y∥, ∥Tx− y∥

}
.

Proof. The proof of (i) and (ii) follows from Theorem 1. (iii) For every n ∈ N
let xn = Tnx0 and let yn = Tny0. From Lemma 1, we have the inequalities

∥xn − yn∥ ≤ kn(∥x0 − y0∥ − d) + d ≤ kn(Mx0,y0
− d) + d,

∥xn+1 − yn∥ ≤ kn(∥Tx0 − y0∥ − d) + d ≤ kn(Mx0,y0 − d) + d,

and

∥xn − xn+1∥ ≤ 2
(
kn(Mx0,y0

− d) + d
)
.

Now, from (1) with x = xn, y = xn+1, z = yn, r = ∥xn − xn+1∥, R =
kn(Mx0,y0

− d) + d, and using the convexity of the set A, we get the chain of
inequalities

d ≤ ∥xn + xn+1

2
− yn∥

≤
(
1− δ

( ∥xn − xn+1∥
d+ kn(Mx0,y0

− d)

))(
d+ kn(Mx0,y0

− d)

)
. (3)

Using (3), we obtain the inequality

δ
( ∥xn − xn+1∥
d+ kn(Mx0,y0 − d)

)
≤ kn(Mx0,y0

− d)

d+ kn(Mx0,y0 − d)
. (4)

From the uniform convexity of X, it follows that δ is strictly increasing, and
therefore there exists its inverse function δ−1, which is strictly increasing.
From (4), we get

∥xn − xn+1∥ ≤
(
d+ kn(Mx0,y0 − d)

)
δ−1

(
kn(Mx0,y0 − d)

d+ kn(Mx0,y0
− d)

)
. (5)

It follows from the inequality δX(t) ≥ Ctq that δ−1
X (t) ≤

(
t
C

) 1
q . Using (5),

we obtain
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∥xn − xn+1∥ ≤ Mx0,y0
q

√
kn(Mx0,y0

− d)

C
(
d+ kn(Mx0,y0

− d)
) (6)

≤ Mx0,y0

q

√
Mx0,y0

− d

Cd
(

q
√
k)n.

So, from (6), we obtain

∥xn − xn+1∥ ≤ Mx0,y0

q

√
Mx0,y0

− d

Cd
(

q
√
k)n. (7)

From (i) and (ii), there exists a unique fixed point ξ ∈ A such that for every
x0 ∈ A, the sequence {Tnx0} converges to ξ. After substitution in (7), we
get the inequality

∞∑
n=1

∥xn − xn+1∥ ≤ Mx0,y0

q

√
Mx0,y0

− d

Cd

q
√
k

1− q
√
k
.

Consequently, the series
∑∞

n=1 ∥xn − xn+1∥ is absolutely convergent. Thus,
for any m ≥ 1, there holds ξ = xm −

∑∞
n=m(xn − xn+1), and we get the

inequality

∥ξ − xm∥ ≤
∞∑

n=m

∥xn − xn+1∥ ≤ Mx0,y0

q

√
Mx0,y0

− d

Cd

( q
√
k)m

1− q
√
k
.

Hence,

∥ξ − Tmx0∥ ≤ Mx0,y0

1− q
√
k

q

√
Mx0,y0

− d

Cd
(

q
√
k)m.

(iv) In a similar way (7), we have

∥xn+i − xn+i+1∥ ≤ Mxn,yn

q

√
Mxn,yn

− d

Cd
(

q
√
k)i.

So,

∥xn − xn+m∥ ≤
m−1∑
i=0

∥xn+i − xn+i+1∥

≤ Mxn,yn

q

√
Mxn,yn − d

Cd

m−1∑
i=0

(
q
√
k)i.

Hence,
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∥xn − xn+m∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn

− d

Cd
(1− (

q
√
k)m). (8)

After letting m → ∞ in (8), we obtain the inequality

∥Tnx0 − ξ∥ ≤ Mxn,yn

1− q
√
k

q

√
Mxn,yn

− d

Cd
.

In the sequence, we obtain the main result of [17] as a special case of
Theorem 2.

Corollary 1. [17, Theorem 3.2] Suppose that A and B are nonempty, closed
and convex subsets of a uniformly convex Banach space (X, ∥.∥) such that
d := d(A,B) > 0, and that T : A ∪ B → A ∪ B is a cyclic contraction map.
Let δX(ϵ) ≥ Cϵq for some C > 0, q ≥ 2, and every ϵ ∈ (0, 2]. Then

(i) there exists a unique best proximity point ξ of T in A, Tξ is a unique
best proximity point of T in B and ξ = T 2ξ;

(ii) for every x0 ∈ A, the sequence {T 2nx0} converges to ξ and {T 2n+1x0}
converges to Tξ.

(iii) a priori error estimate holds

∥ξ − T 2nx0∥ ≤ ∥x0 − Tx0∥
1− q

√
k2

q

√
∥x0 − Tx0∥ − d

Cd
(

q
√
k)2n;

(iv) a posteriori error estimate holds

∥T 2nx0 − ξ∥ ≤ ∥T 2n−1x0 − T 2nx0∥
1− q

√
k2

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd
q
√
k.

Proof. The proof of (i) and (ii) follows from [17, Theorem 2.1].
Because T is a cyclic contraction map, it is clear that T 2 is a noncyclic

contraction map and

d(T 2x, T 2y) ≤ k2d(x, y) + (1− k2)d(A,B).

(iii) As T is a cyclic contraction map, we have

∥T 2x0 − Tx0∥ ≤ k∥Tx0 − x0∥+ (1− k)d(A,B) ≤ ∥Tx0 − x0∥.

So,

max
{
∥x0 − Tx0∥, ∥T 2x0 − Tx0∥

}
= ∥x0 − Tx0∥.
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Hence,

Mx0,Tx0 = ∥x0 − Tx0∥.

Applying Theorem 2(iii) for noncyclic contraction T 2, we obtain

∥ξ − T 2mx0∥ ≤ Mx0,Tx0

1− q
√
k2

q

√
Mx0,Tx0

− d

Cd
(

q
√
k2)m

=
∥x0 − Tx0∥
1− q

√
k2

q

√
∥x0 − Tx0∥ − d

Cd
(

q
√
k)2m.

(iv) Since T is a cyclic contraction map, we get

∥T 2n+2x0 − T 2n+1x0∥ ≤ k∥T 2n+1x0 − T 2nx0∥+ (1− k)d(A,B)

≤ ∥T 2n+1x0 − T 2nx0∥,

for every n ∈ N. So,

max
{
∥T 2nx0 − T 2n+1x0∥, ∥T 2n+2x0 − T 2n+1x0∥

}
= ∥T 2nx0 − T 2n+1x0∥.

Hence, we have relations

MT 2nx0,T 2n+1x0
= ∥T 2nx0 − T 2n+1x0∥, (9)

MT 2nx0,T 2n+1x0
≤ ∥T 2n−1x0 − T 2nx0∥, (10)

MT 2nx0,T 2n+1x0
− d ≤ k(∥T 2n−1x0 − T 2nx0∥ − d). (11)

Applying Theorem 2(iv) for noncyclic contraction T 2, (9), (10), and (11), we
obtain

∥T 2nx0 − ξ∥ ≤
MT 2nx0,T 2n+1x0

1− q
√
k2

q

√
MT 2nx0,T 2n+1x0

− d

Cd

≤ ∥T 2nx0 − T 2n+1x0∥
1− q

√
k2

q
√
k

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd

≤ ∥T 2n−1x0 − T 2nx0∥
1− q

√
k2

q

√
∥T 2n−1x0 − T 2nx0∥ − d

Cd
q
√
k.

Let A and B be nonempty, closed, and convex subsets of a uniformly
convex Banach space (X, ∥ · ∥) with a modulus of convexity of power type.
Theorem 2 shows that if noncyclic contraction T has a fixed point ξ ∈ A such
that {Tnx0} converges to ξ for some x0 ∈ A and (2) holds for every x ∈ A
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and y ∈ B, then priori and posteriori errors estimates hold in relations (iii)
and (iv) of Theorem 2, respectively. Also, Zlatanov [17] showed that if the
cyclic contraction T has the best proximity point ξ ∈ A such that {T 2nx0}
converges to ξ for some x0 ∈ A and

d(Tnx, Tn+1x)− d(A,B) ≤ kn(d(x, Tx)− d(A,B)) (12)

for every x ∈ A ∪ B, then priori and posteriori errors estimates hold in
relations (iii) and (iv) of Corollary 1, respectively. In fact, these results can
be generalized to contractions that satisfy these conditions. For instance,
consider the generalized cyclic quasi-contraction T : A∪B → A∪B introduced
in [14]. The author proved that if A and B are nonempty, closed, and convex
subsets of a uniformly convex Banach space and T : A ∪ B → A ∪ B is a
generalized cyclic quasi-contraction, that is, for which there exists k ∈ [0, 1)
such that

∥Tx− Ty∥ ≤k max
{
∥x− y∥, ∥x− Tx∥, ∥y − Ty∥, ∥x− Ty∥+ ∥Tx− y∥

2

}
+ (1− c)d(A,B),

for all x ∈ A and y ∈ B; then for every x0 ∈ A the sequence {T 2nx0}
converges to some best proximity point ξ ∈ A and (12) holds. So priori and
posteriori errors estimates for each best proximity point of a generalized cyclic
quasi-contraction hold in relations (iii) and (iv) of Corollary 1, respectively.
Ilchev [11] used exactly this point to get the main results for the Kannan
cyclic contractive maps.

4 A numerical example

We know that the space (Rp, ∥ · ∥p) is uniformly convex with modulus of con-
vexity of power type, provided that p > 1. The following example illustrates
Theorem 2.

Example 1. Consider the space R2 endowed with the norms ∥(x, y)∥2 =
2
√
|x|2 + |y|2. Let

A = {(x, y) ∈ R2 : y − x+ 1 ≤ 0, y + x− 1 ≥ 0}

and

B = {(x, y) ∈ R2 : y − x− 1 ≥ 0, y + x+ 1 ≤ 0}.

It is easy to calculate d(A,B) = 2. Suppose that λ ∈ (0, 1). Let us define a
map T : R2

2 → R2
2 by
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T (x, y) =

{
(1− λ+ λx, λy) if (x, y) ∈ A,
(−1 + λ+ λx, λy) if (x, y) ∈ B.

We will show that the map T : A ∪ B → A ∪ B is a noncyclic contraction
with k = λ. Consider (x, y) ∈ A, and let (x′, y′) := T (x, y). Then

y′ − x′ + 1 = λy − 1 + λ− λx+ 1 = λ(y − x+ 1) ≤ 0

and

y′ + x′ − 1 = λy + 1− λ+ λx− 1 = λ(y + x− 1) ≥ 0.

Therefore, T (A) ⊆ A. The inclusion T (B) ⊆ B is proved in a similar fashion.
It is easy to observe that (1, 0) is a fixed point of T in A, that (−1, 0) is a
fixed point of T in B, and that ∥(1, 0) − (−1, 0)∥2 = 2. Let u1 = (x, y) and
let u2 = (x′, y′). Then

∥T (x, y)− T (x′, y′)∥2 = ∥(2(1− λ) + λ(x− x′), λ(y − y′))∥2
=
√
|2(1− λ) + λ(x− x′)|2 + λ|y − y′|2

= ∥2(1− λ)e1 + λ(u1 − u2)∥2
≤ λ∥u1 − u2∥2 + (1− λ)d(A,B).

Thus we can apply Theorem 2 to get error estimates of the successive itera-
tions {xn}, where xn+1 = Txn. We will consider a numerical example with
λ = 1

16 . From [13], we get C = 1
8 and q = 2.

Applying Theorem 2(iv), we obtain

∥xn − ξ∥ ≤ Mn,

for n ≥ 0, where

Mn :=
8

3
Mxn,yn

√
Mxn,yn

− 2.

In the following table, we obtain the number n of iterations, needed by a
posteriori estimate less than 0.005 with initial points x0 = (1000, 8) and
y0 = (−500.5,−4), which is at least 8.

Applying Theorem 2(iii), we get

∥ξ − xn∥ ≤ 8

3
Mx0,y0

√
Mx0,y0 − 2(

1

4
)n,

The number n of iterations, needed by a priori error estimate less than 0.005
with an initial points x0 = (1000, 8) and y0 = (−500.5,−4), is at least 13.

Similarly, it is shown that the number n of iterations, needed by a poste-
riori estimate less than 0.005 for λ = 1

4 with initial points x0 = (1000, 8) and
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λ = 1
16

xn Mxn,yn Mnyn

n = 0
(1000, 8)

1500.547983 154900.90193
(−500.5,−4)

n = 1
(63.4375, 0.5)

95.65919017 2468.71315
(−32.21875,−0.25)

n = 2
(4.90234375, 3.125× 10−2)

7.8536555 50.67037
(−2.951171875,−1.5625× 10−2)

n = 3
(1.243896484, 1.953125× 10−3)

2.3658465 3.81596
(−1.121948242,−9.765625× 10−4)

n = 4
(1.01524353, 1.220703125× 10−4)

2.0228653 0.81568
(−1.007621765,−6.103515625× 10−5)

n = 5
(1.000952721, 7.629394531× 10−6)

2.0014290 0.20176
(−1.00047636,−3.81469726× 10−6)

n = 6
(1.000059545, 4.768371582× 10−7)

2.0000893 0.05040
(−1.000029773,−2.384185791× 10−7)

n = 7
(1.0000037215, 2.98023223× 10−8)

2.0000055 0.01260
(−1.0000018607,−1.490116119× 10−8)

n = 8
(1.0000002325, 1.8626451× 10−9)

2.0000003 0.00315
(−1.0000001162,−9.31322574× 10−10)

y0 = (−500.5,−4), is at least 16. Also, the number n of iterations, needed
by a priori error estimate less than 0.005, is at least 26.

5 Conclusion

In this article, we found a priori and a posteriori errors estimates for ap-
proximating fixed points for noncyclic contraction maps, which is defined
on a uniformly convex Banach space with a modulus of convexity of power
type. As seen in Example 1, a priori error estimate gives a larger number of
iterations that are needed than a posteriori estimate. Therefore, it can be
concluded that formula (iv) of Theorem 2 provides a better upper bound for
error estimates.
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