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Approximate solution for a system of
fractional integro-differential equations by
Mintz Legendre wavelets
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Abstract

We use the Miintz Legendre wavelets and operational matrix to solve a
system of fractional integro-differential equations. In this method, the sys-
tem of integro-differential equations shifts into the systems of the algebraic
equation, which can be solved easily. Finally, some examples confirm-
ing the applicability, accuracy, and efficiency of the proposed method are
given.
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1 Introduction

The theory of fractional calculus and especially fractional differential equa-
tions has recently become a popular topic, and many natural phenomena are
modeled by it in [26, 21, 28, 11, 17, 2, 3]. The fractional integro-differential
equations (FIDEs) are generalized integro-differential equations. In general,
it is very difficult to obtain an exact solution for most FIDEs, so the use of
approximate methods seems necessary. Many studies have used approximate
methods to solve FIDE problems, such as Adomian decomposition method
[9, 18], variational iteration method [10, 29, 22], the generalized differential
transform method [1, 23], the homotopy perturbation method [36, 27], the
collocation method [12, 19, 14, 34, 16], and block-pulse functions (BPFs)
method [4, 7, 32, 33].

One type of the numerical methods that has been used effectively for
solving FIDEs is wavelets methods, which can be referred to in as Legendre
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wavelets [35], Chebyshev wavelets [37], Haar wavelets [31], Bernoulli wavelet
[13, 30], and Mintz Legendre wavelets [5]. Consider the following nonlinear
system of FIDEs, where s,t € [0,1],0 < p,q < 1, and DP and D7 represent
Caputo derivative:
DPy(t) = fur(t,ya(t),y2(t) + [ Frz(s,y1(5), y2(s))ds, )
Dys(t) = for (£ y1 (1), 92(8)) + Jy foo(s,1(5), ya(s))ds.

In this article, Miintz Legendre wavelets and operational matrix have been
used to obtain a numerical solution for relation (1).

The organization of the paper is as follows: In Section 2, some basic
results from the fractional calculus and the definition of Mimtz Legendre
wavelets are given. In Section 3, a numerical method based on Mintz Leg-
endre wavelets for an approximation system of FIDEs and its convergence
analysis is presented. In Section 4, the mentioned method has been examined
by some examples. Finally, the conclusion is given in Section 5.

2 Preliminaries

In this section, some basic results from the fractional calculus and Miintz
polynomial are given.

2.1 Caputo derivative and Riemann—Liouville integral
Definition 1 (see [25]). The fractional derivative of f(t) in Caputo sense for
p,t € [0,1] is defined as

1 K o
m/o(t—ﬂ fi(r)dr,

where f(t) is an unknown function in an appropriate functional space and T’
is the gamma function.

DPf(t) =

Definition 2 (see [25]). The Riemann-Liouville fractional integral of order
p can be defined as follows:

e I A O

Remark 1 (see [25]). The following relationships exist between Caputo
derivative and Riemann—Liouville integral:
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DPIPf(t) = f(1),

n—1 m
rorp =10 -5 2 g mt<pan @)

m)!
=0

2.2 Miintz polynomial and Miintz Legendre wavelets

Theorem 1 (see [24]). The sequence {t*}22, with 0 < \g < Ay < -+ — 00
is fundamental in L9[0, 1] if and only if

o0
Z )\k_l = 00.
k=1

The classical Miintz polynomial is represented as

N
E akt)‘k,
k=0

where a; € R.

The Mintz Legendre polynomial is an orthogonalized Miintz polynomial re-
spect to the Lebesgue measure in [0, 1]. Assume that A, = {Xo, A1, Ao, ..., An}
and that

Re(\g) > —% (k€ Ng), A #A (k7).

Then we can represent Miintz Legendre polynomial as follows (see [8, 20]):

n—1
" H A+ A +1)
En(t) = ch,nt)\ka Ckn = ]:On (TL < No)
k=0 [T (A —=2X5)
Jj=0,j#k

In this paper, we set A\, = ky and v = 1.
Mimtz Legendre wavelets are defined on [0, 1] as (see [5]):

— n_l "
2F=1(1 4 2mA) + L (25 —n — 1,7), o1 SE< o
0

otherwise,

nm(t) =

where n = 1,2,...,28"1 m =0,1,2,...,M — 1(k, M € N), and L,,(t,7) is
the well-known Miintz Legendre of order m, that in which A\ = k~.
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3 Approximation of function by using Miintz Legendre
wavelets

Any function y belonging to L2[0,1] can be expanded by Mimntz Legendre
wavelets as follows (see [5]):

y(t) ~ Z Z A Prm (1) (3)
n=1m=0
Assume that
{Qpl,()(t)a cey (pl,M—l(t)a @Q,O(t)v ) 7<)O2,M—1(t)7 )
ar-1,0(t); .. Par-1ar-1(t)}
is a set of Miintz Legendre wavelets and that
X = Span{SOLO(t)a ey Sol,M—l(t)a @Q,O(t)a oo 7%02,M—1(t)7 ey
or—1,0(t); -+ Par—1 ar—1()}-

Since X is a finite-dimensional function space of L0, 1], so y has the best
unique approximation y,,» € X such that ||y — ym|| < ||y — || for all z € X.
Moreover, there are unique coefficients a,,, such that

2kt M1 .
Y(t) = ym = Z Z Am Prm (t) = Ay Prm (8), (4)
n=1 m=0
where
T
Anm = {alﬁo, ey A1 M—1,0205 -, A2 M —15 - - - ,an—170, NN ,a2k—171\/1_1] 5
Qo (t) = [P100): -+ 111 (D $20(8) - 2011 (8-

T
wgk—l)o(t), ey QDQk—l)M_l(t):| .

Equation (4) can be rewritten as

Y() = v (£) = 3 api(6) = A @i (1), (5)

where

T
Am/ = |Q1y.--s AN, AM+15-- -, A2M 5 - ..a2k71(M+1), vy Qo 5
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T
Dy = [P1(8), oo () a1 (), - 20 (1), P areny (o ()]

A = Qpm, Pi = Pnm; i:(n—l)M+m—|—1, m/ =281

Suppose that ¢; = 2=% i =1,2,3,...,m’ are collocation points. We define

m”

the Miintz Legendre wavelets \I/ as follows:

‘Ilm’xm’ = (I)(

) D) Do) B

/

1 3 5 2m’ — 1)}

2m 2m’ 2m

Theorem 2 (see [6]). Suppose that y(t) € CM[0,1]. that y,./(t) € X is the
approximation of y(t) via wavelet, and that there exists D € N such that
lyM)(t)] < D for all t € [0,1]. Then

D
leyll = lly(#) — ym: (D] < VM1

Theorem 3. Suppose that in (1), fi; (i, = 1,2) satisfies the Lipschitz
condition and y; , is an approximate solution of y;(t) by the Miintz Legendre
wavelets method. If k, M — oo, then [le;[| = [ly; —y; || — 0.

Proof. Let r;(t) (i = 1,2) be perturbation terms and let [p;| = m;. we can
write Yi , and Yi,, e as follows:

mi—l

Yi,, () =ri(z) +
k=1

1 t T pi—1p s s s sdi
+Tp>// (t— )" fials,mn,(5), 92, (5))dsd,

(k) 1
Yi k4

k! F(pi)/o (t=2)" " fu(e, vi (@), 92, ,(2))dx

(6)

mi—l

vi (1) +eilt) =
k=1

-l-%/ (t— )"~ le(x v, (@) +ei(x),y2 (7)) + ex(x)dx

yi(k) e
k!

fz2(s n ,(S)

+e1(s),y2 ,(s) + e2(s))dsdz.
(7)

By subtracting (6) from (7) and employing the Lipschitz condition, we have

leill <llrall + =—

1 K pi—1
o <||e1||+||e2||>/<t—x> dz

= )Ll leall + flezl) / / )PV dsd.

(8)
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By setting max{L1, Lo} = L, [y*(¢)] < D;(i = 1,2), D = max{D;, Dy}

3
and using Theorem 1, we can write

1 1
il < el + L
leill < [lrill + L(|lex ]l + ”62”)(F(pi ) + T + 2))

1 ( 1 n 1 ) ()
MRMGETD \T(p, +1)  T(p; +2)

< ||| LD

Since k, M — oo, then ||r;|| — 0. We can conclude that [le;|] — 0 (i =
1,2). O

3.1 Operational matrix of the fractional integration

In this section, we review the fractional-order operational matrix of integra-
tion related to the Miintz Legendre wavelets. For this purpose, the required
definitions and lemmas are given from [30].

Definition 3. For m’ = 2¥"'M and ¢ = 1,2,...,m/, the set of BPFs is
defined as
(- 1)

bi(t) = ’ m’
0 otherwise.

1
St<7/a
m

‘We use the following properties of BPFs:

b 7 Bl(m)a Z = j,
bi(2)b; () = =
O’ ? 7£ 7
@ 1 o
R L S
0 0, i#J.
Definition 4. Suppose that U = [u1,uz, ..., U]’ and
V = [v1,02,...,0m]". We define
U D= [ulvl, UV, . . . ,um/vm,]T,

Lemma 1. Let B, = [61,bA2,...,b,;£/]T, and suppose that f(t),g(t) €
L3[0,1] can be written as f(t) = FT B, (t) and g(t) = GT B (t)(FT =
[flaf?v- . -7fm']7GT = [913927 s ,gm’])- Then

f(@)g(x) = FT By ()GT By (t) = (FT @ GT) By (1), (10)

2

F(@)? = (FT By (1)) = () By (1) (11)
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The Riemann—Liouville fractional integration of order o of BPFs can be
presented as (see [15]):

Ime’(t) ~ ]:me’ (t)a (12)
where FP is the BPFs operational matrix with

(1A fo e fret
01f - fr—2
17 1 001 f—s
T2 |00 0 fwoal

000--- 1

in which fi, = (k + 1)PTt — 2kPTt 4+ (K — 1)PTL k=1,2,....m' — 1.

We now derive the operational matrix of fractional integration of Miintz
Legendre wavelets. The integration of Miintz Legendre wavelets ®,,/(z) can
be expressed as

1B, (t) = /0 5, (8)ds A Pry @y (2), (13)

where the m/-square matrix P, is called Mimntz Legendre wavelets opera-
tional matrix. Also
IP®,, (t) = PP, @ (t), (14)

where PP, is called Miintz Legendre wavelets fractional integral operational
matrix.
The Mimtz Legendre wavelets can be expanded into m’-set BPFs as

Bpr (1) & W B (1). (15)
Considering (12), we can write (14) and (15) as

IP®,0 (1) & 1PW 0 By (1) = U, IP By () & Ut FP Byt (1),
PP B, (1)~ TP, (1) & W, FP By (1) 2 W, FPU 1D, (1),

Finally, we conclude
PP~ U FPU,
4 Examples

In this section, some examples are solved by using the proposed method with
different parameters.
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Example 1. Consider
(16)

where y1(0) = 0,y2(0) = 0.
Exact solutions for system (16) are y;(t) = v/t and y»(t) = —v/t. Indeed
D3y (t) ~ Gl @ (t),  D2ya(t) m Hiby B (2), (17)
where
Gl =1[91,92.93, -, gmr],  HE = [h1,ho,hs, .., hyn].

By using the initial conditions and (2), (14), (15), and (17), we have

1(t) +41(0) = GT, P2,®,,(t) = G, P2 U, By (1),

ya(t) = T2 DEya(t) + 5 (0) ~ HE, Py @ (8) & HE Pt W B (1)
(18)
Then, from (13) and (18), we obtain
t t 1 1 t
/ y1(s)ds ~ / Gl P2, @, (s)ds = GE P2, / P, (s)ds
0 0 0 (19)
1 1 A
~ GT P2, PL &, (1) ~ GL, P2 W, B (t),
and similarly
t 1+l N
/ yo(s)ds ~ HL, P 72 W, By (1). (20)
0
By replacing (17)—(20) into (16), we obtain
GT W, By (t)
A 1 1 A
=T [ L1 B () + (G P2 Wy + HE P2 W) B (1),
HT, W, By (t)
1 1 A A
= (GL, P2 Wy + HE P2 W) By (8) — T(3)[L L, 1] B (8).
(21)
Relation (21) can be rewritten as follows:
{ GT Wy =T()[L 1, 1] + G Ph Wy + HE P20,
1 1
HL W, =GL, P2V, + HL P2, —T(3)[1,1,...,1], .
(22)

By solving the nonlinear system (22), we can obtain the matrices of coeffi-
cients G and H.
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In Figure 1, the exact and approximate solutions using the proposed method
(k =6, M = 2) are plotted and the numerical values are given in Table 1.

1 )
—x— Exact y1(t)

o App.y,(t)

0 )
—x— Exact y1(t)

0.1 —O—App. Y, 1

¥,(t)

Figure 1: Exact and approximate solution of y1(¢) and y2(¢) in Example 1.

Table 1: Exact and approximate solution and absolute error (AE) for y1(t) and ya(t)
in Example 1.

t Ex. y1(t) | Ap. (1) | AEwp() | BEx ya@) | Ap. ye(t) | AE ys(t)

2.3438e-02 | 1.5309¢-01 | 1.5237e-01 | 7.2418e-04 | -1.5309e-01 | -1.5237e-01 | 7.2418e-04
1.0156e-01 | 3.1869e-01 | 3.1861e-01 | 7.8660e-05 | -3.1869e-01 | -3.1861e-01 | 7.8660e-05
1.7969¢-01 | 4.2390e-01 | 4.2386e-01 | 3.3400e-05 | -4.2390e-01 | -4.2386e-01 | 3.3400e-05
2.5781e-01 | 5.0775e-01 | 5.0773e-01 | 1.9431e-05 | -5.0775e-01 | -5.0773e-01 | 1.9431e-05
3.3594e-01 | 5.7960e-01 | 5.7959e-01 | 1.3062e-05 | -5.7960e-01 | -5.7959e-01 | 1.3062e-05
4.1406e-01 | 6.4348¢-01 | 6.4347e-01 | 9.5455e-06 | -6.4348e-01 | -6.4347e-01 | 9.5455¢-06
4.9219¢-01 | 7.0156e-01 | 7.0155e-01 | 7.3654e-06 | -7.0156e-01 | -7.0155e-01 | 7.3654e-06
5.7031e-01 | 7.5519e-01 | 7.5518e-01 | 5.9049e-06 | -7.5519e-01 | -7.5518e-01 | 5.9049e-06
6.4844¢e-01 | 8.0526¢-01 | 8.0525¢-01 | 4.8706e-06 | -8.0526e-01 | -8.0525¢-01 | 4.8706e-06
7.2656e-01 | 8.5239¢-01 | 8.5238e-01 | 4.1065¢-06 | -8.5239¢-01 | -8.5238e-01 | 4.1065¢-06
8.0469e-01 | 8.9704e-01 | 8.9704e-01 | 3.5232e-06 | -8.9704e-01 | -8.9704e-01 | 3.5232e-06
8.8281e-01 | 9.3958e-01 | 9.3958e-01 | 3.0660e-06 | -9.3958e-01 | -9.3958e-01 | 3.0660e-06
9.7656¢-01 | 9.8821e-01 | 9.8821e-01 | 2.6353e-06 | -9.8821e-01 | -9.8821e-01 | 2.6353e-06

Example 2. Consider
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{ DPyy(t) = sy1(t)y2(t) + 5y22(t) + 2y2(t fo y1(s) + y2(s)]ds, (23)
Ly (t)y2(t) — i (t) + 1 — fo y1(8) — 2y2(s)]ds,

where y1(0) =0,42(0) =0, and 0 < p,g < 1.

Exact solutions for the above system when p = ¢ = 1 are y;(¢) = t* and
y2(t) = t. The exact solutions of y; (¢) and y5(¢) for p, ¢ € (0,1) are unknown.
Let

DPyi(t) = UL, @, (t), Dlys(t) = VL, &, (1), (24)
where
UZ;’ = [Ul,UQ,Ug, e ,um/], V"];/ = [’Ul,’UQ,’Ug, . ,Um/].

By using the initial conditions and (2), (14), (15), and (24), we have

y1(t) = IPDPyy (t) + y1(0) = UL, PP, &, (t) ~ UL, P2, W, By (1),
Yo (t) = I9D%y5(t) + y2(0) ~ m,Pm,<I> () = VEPL W, By (t).

(25)
Then, from (10), (11), (13), and (25), we obtain
i ()y2() & (U Pl Wt B () (Vi Py U B (1)) (26)
= (ULP2 W, @ VEPL W,000) By (1),
. 2
Y3(1) % (VPR W B (1)) = (Vi P2 W) By (1), (27)
t t
yi(s dsw/ UL PP, &, (s)ds = UL PP, / ds
| mtss= [ /(5) o9
~ UL PP PL, @, (1) ~ Uﬁ,P},ijI/m,Bm,( t),
and in the same way
¢
/ ya(s)ds = VI, PHI, B, (t). (29)
0
By replacing (24) and (26)—(29) into (23), we obtain
UL Wy By (t) = L(UL P2V @ VEPL ) By (t)
(VL PL T, B (1) + 2V P 0 B (1)
—UL PrtPW By (1) — v,f,P},j‘qum, B (1),
(30)

Vyz;/\llm/ém’ (t) = %(U»Z;/P,’I;LI m & V P \I/ )Bm/ (t)
_Uglpgl, m’Bm/( ) [1,1,...,1]1Xm/3m/(t)
—UT, PAPW, B (8) + 2V PO, By ().

Relation (30) can be rewritten as follows:
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UL W, = L(UZP2, 0, @ VIPLW,,) + L (VLPLY,,)

+2VE P W, — UL, PHPw, B, (t) — VI, P 1w,

(31)
VI, = JULPL U @ VEPL ) — UL PE, Uy By (t)

HL1 1], = UL PP W + 2V P,

By solving the nonlinear system (31), we can obtain the matrices of co-
efficients U and V. In Figure 2, the exact solutions for p = ¢ = 1 and
approximate solutions for different values of p and ¢ are plotted. In Fig-
ure 2, the approximate values are obtained by using the proposed method
(k=5,M = 3), and also the numerical values are given in Tables 2 and 3.

1.2 —X—Exacty1(t) 1 Exact y,(t)
—o 09f © et
—¥—p=0.85 | —*—q=085

1|—%—p=07 —4—q=0.7
0.8 —m— g=0.55

0.7
0.8
0.6
= =
= 06 =05
> >
0.4
0.4
0.3
0.2
0.2
0.1
ot
0 05 1 0 0.5 1

Figure 2: Numerical solution of y; (t) and y2(t) for different values p and ¢ in Example
1.

Example 3. Consider

{ DPyi(t) = 43 (1) + v3(t) — Jy w1 (s)ds, (32)

Diys(t) = —3y3(8) — ya(t) + L + [ y1(s)y2(s)ds

where y1(0) =0,y2(0) =1 and 0 < p,qg < 1.
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Table 2: Exact and approximate solution and absolute error (AE) for yi (t) in Example
1.

t Ex[p=1] | Ap[p=1] | AEp=1] | Ap.[p=0.85] | Ap.[p=0.7] | Ap.[p = 0.55]
1.0417e-02 | 1.0851e-04 | 2.1680e-04 | 1.0829e-04 9.0701e-04 3.7273e-03 1.4986e-02
9.3750e-02 | 8.7891e-03 | 8.8949¢-03 | 1.0582e-04 | 2.3452e-02 5.9316e-02 1.4077e-01
1.7708¢-01 | 3.1359e-02 | 3.1460e-02 | 1.0172e-04 6.8756e-02 1.4291e-01 2.7310e-01
2.6042e-01 | 6.7817e-02 | 6.7913e-02 | 9.5890e-05 1.3193e-01 2.4150e-01 3.9923e-01
3.4375e-01 | 1.1816e-01 | 1.1825e-01 | 8.8208e-05 2.1044e-01 3.4943e-01 5.1564e-01
4.2708e-01 | 1.8240e-01 | 1.8248e-01 | 7.8552e-05 3.0242e-01 4.6286e-01 6.2076e-01
5.1042¢-01 | 2.6053e-01 | 2.6059¢-01 | 6.6793e-05 4.0627e-01 5.7884e-01 7.1406e-01
5.9375e-01 | 3.5254e-01 | 3.5259e-01 | 5.2791e-05 5.2059e-01 6.9495e-01 7.9567e-01
6.7708¢-01 | 4.5844e-01 | 4.5848e-01 | 3.6398e-05 6.4402¢-01 8.0916e-01 8.6627¢-01
7.6042e-01 | 5.7823e-01 | 5.7825e-01 | 1.7458e-05 7.7524e-01 9.1976e-01 9.2690e-01
8.4375¢-01 | 7.1191e-01 | 7.1191e-01 | 4.1961e-06 9.1295¢-01 1.0253e+00 9.7893e-01
9.2708e-01 | 8.5948e-01 | 8.5945e-01 | 2.8742¢-05 | 1.0558e+00 1.1248e+00 1.0240e+00
9.8958¢-01 | 9.7928e-01 | 9.7923e-01 | 4.9161e-05 | 1.1656e+00 1.1950e+00 1.0543e+00

Table 3: Exact and approximate solution and absolute error (AE) for yo(t) in Example
1.

t Ex.[¢=1] | Ap.[g=1] | AE[g=1] | Ap.[¢=0.85] | Ap.[¢ =0.7] | Ap.[¢ = 0.55]
1.0417e-02 | 1.0417e-02 | 1.0416e-02 | 7.5926e-07 2.1272¢-02 4.2951e-02 8.5180e-02
9.3750e-02 | 9.3750e-02 | 9.3743e-02 | 7.0114e-06 1.4078e-01 2.0576e-01 2.8594e-01
1.7708e-01 | 1.7708e-01 | 1.7707e-01 | 1.3592e-05 2.4035e-01 3.1438e-01 3.8446e-01
2.6042e-01 | 2.6042e-01 | 2.6040e-01 | 2.0462e-05 3.3126e-01 4.0256e-01 4.5249e-01
3.4375e-01 | 3.4375e-01 | 3.4372e-01 | 2.7585e-05 4.1619e-01 4.7775e-01 5.0415e-01
4.2708e-01 | 4.2708e-01 | 4.2705e-01 | 3.4929e-05 4.9638e-01 5.4348e-01 5.4588e-01
5.1042¢-01 | 5.1042e-01 | 5.1037e-01 | 4.2466e-05 5.7259e-01 6.0188e-01 5.8140e-01
5.9375e-01 | 5.9375e-01 | 5.9370e-01 | 5.0169¢-05 6.4530e-01 6.5441e-01 6.1329¢-01
6.7708e-01 | 6.7708e-01 | 6.7703e-01 | 5.8012e-05 7.1488e-01 7.0223e-01 6.4344e-01
7.6042e-01 | 7.6042e-01 | 7.6035e-01 | 6.5975e-05 7.8160e-01 7.4628e-01 6.7336e-01
8.4375e-01 | 8.4375e-01 | 8.4368¢-01 | 7.4034e-05 8.4566¢-01 7.8743¢-01 7.0429¢-01
9.2708e-01 | 9.2708e-01 | 9.2700e-01 | 8.2170e-05 9.0727e-01 8.2650e-01 7.3726e-01
9.8958¢e-01 | 9.8958e-01 | 9.8950e-01 | 8.8310e-05 9.5195e-01 8.5492¢-01 7.6385¢-01

Exact solutions for the above system when p = g = 1 are y;(t) = sin(t)
and ys(t) = cos(t). The exact solutions of y;(t) and ya(¢) for p,q € (0,1) are
unknown.

Let
DPy,(t) = WL, @, (t), Dls(t) ~ RL, &, (1), (33)

where

ng = [’LUl,wQ,’LU3,...,’LUm/], Rﬁ/ = [7’1,7‘2,7’3, N ,Tm/].

By using the initial conditions and (2), (14), (15), and (33), we have

y1(t) = IPDPy, (1) + y1(0) = WL, PP, &, (t) = WE PP W, By (t),
ya(t) = 19D%ys(t) + y2(0) & RE P, @y () + 1 & R PL W,y By () + 1,
(34)
Then, from (10), (11), (13), and (34), we obtain
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y1()y2(t) = (WE PP W By (1)) (RE, PL W, By () + 1)
= (WX PP W, @ RE, PL 0, By (t) + WE PP W, By (1),

2 A
Y2 () ~ (WL PP W) B (1),
Y3() ~ (RE P, W) By (8) + 2RD, P W B (1) + 1,

t t
/ v (s)ds ~ / WP @ (s)ds ~ WEPHPw, Buo(t),  (37)
0 0

t t
/ Y1 (5)ya(s)ds ~ / (WL PP W @ BT, P W) B (5)ds
0 0
t
+ / W, PP Wy (5) By (5)ds
0

t
=(WZLPl U, @ RY,PLW,,) / By (s)ds
0

t
+W,7;/P£L/\I/m//0 By (s)ds (38)
t
~ (WL PP U, @R PL W, / U1 D, (s)ds
0

¢
+ WL PE W, / UL, (s)ds
0
~ (WEPP W, @ R, PL Y, NG P, W, By ()
—|—W;lr:/ }Yj,_p\llmlém/(t).
By replacing (33)—(38) into (32), we obtain

WL, = (WLPP,W,,)" + (RL,PL,V,,)*
+2RY P Wy — WE PP+ (1,11

Ixm?’’

RT, W, = —3(RT,PLW,,)" —RL,PL U, — WL P U,,
~(WE PP WU, @ RE,PL W, + WEPE W, NPT,

(39)
By solving the nonlinear system (39), we can obtain the matrices of coef-
ficients W and R. In Figure 3, the exact solutions for p = ¢ = 1 and
approximate solutions for different values of p and ¢ are plotted. In Fig-
ure 3, the approximate values are obtained by using the proposed method
(k=4,M = 6), and also the numerical values are given in Tables 4 and 5.
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Figure 3: Numerical solution of y1(t),y2(t) for different values p and ¢ in Example 2.

Table 4: Exact and approximate solution and absolute error (AE) for yi (t) in Example

2.

t Ex[p=1] | Ap[p=1] | AE [p=1] [ Ap.[p=0.9] | Ap.[p=0.8] | Ap.[g=0.7]
1.0417¢-02 | 1.0416e-02 | 1.0415¢-02 | 1.6952¢-06 | 1.6784e-02 | 2.6928¢-02 | 4.2987¢-02
9.3750e-02 | 9.3613¢-02 | 9.3597¢-02 | 1.5248¢-05 | 1.2310e-01 | 1.6051e-01 | 2.0698¢-01
1.7708¢-01 | 1.7616-01 | 1.7613e-01 | 2.8760e-05 | 2.1677e-01 | 2.6388e-01 | 3.1639e-01
2.6042e-01 | 2.5748¢-01 | 2.5744e-01 | 4.2191e-05 | 3.0362e-01 | 3.5318e-01 | 4.0297e-01
3.4375e-01 | 3.3702e-01 | 3.3696e-01 | 5.5500e-05 | 3.8452e-01 | 4.3146e-01 | 4.7285¢-01
4.2708¢-01 | 4.1422¢-01 | 4.1415¢-01 | 6.8655¢-05 | 4.5957¢-01 | 4.9979¢-01 | 5.2851e-01
5.10420-01 | 4.8854¢-01 | 4.8846¢-01 | 8.1641c-05 | 5.2857c-01 | 5.5854c-01 | 5.7118¢-01
5.9375¢-01 | 5.5947¢-01 | 5.5938¢-01 | 9.4461c-05 | 5.9123¢-01 | 6.0778¢-01 | 6.0154¢-01
6.7708e-01 | 6.2652e-01 | 6.2642e-01 | 1.0715e-04 | 6.4720e-01 | 6.4744e-01 | 6.1997e-01
7.6042e-01 | 6.8922¢-01 | 6.8910e-01 | 1.1978¢-04 | 6.9609e-01 | 6.7729e-01 | 6.2671e-01
8.4375e-01 | 7.4714e-01 | 7.4701e-01 | 1.3249e-04 | 7.3749e-01 | 6.9709e-01 | 6.2197e-01
9.2708¢-01 | 7.9987¢-01 | 7.9973¢-01 | 1.4544¢-04 | 7.7098¢-01 | 7.0653¢-01 | 6.0602¢-01
9.8958¢-01 | 8.3580c-01 | 8.3564e-01 | 1.5548¢-04 | 7.9065¢-01 | 7.0661e-01 | 5.8697¢-01
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Table 5: Exact and approximate solution and absolute error (AE) for y2(t) in Example

2.

t Ex[¢=1] | Ap[g=1] | AE[g=1] | Ap.][¢=0.85] | Ap.[¢ =0.7] | Ap.[g = 0.55]

1.0417e-02 | 9.9995e-01 | 9.9989e-01 | 5.4234e-05 9.9972¢-01 9.9927e-01 9.9815e-01
9.3750e-02 | 9.9561e-01 | 9.9556e-01 | 5.3356e-05 9.9152e-01 9.8413e-01 9.7089e-01
1.7708e-01 | 9.8436e-01 | 9.8431e-01 | 5.1034e-05 9.7364e-01 9.5657e-01 9.3023e-01
2.6042e-01 | 9.6628¢e-01 | 9.6624e-01 | 4.7223e-05 9.4758e-01 9.2039e-01 8.8251e-01
3.4375e-01 | 9.4150e-01 | 9.4146e-01 | 4.1891e-05 9.1427e-01 8.7751e-01 8.3059e-01
4.2708¢-01 | 9.1018e-01 | 9.1014e-01 | 3.5016e-05 8.7448e-01 8.2939¢-01 7.7641e-01
5.1042e-01 | 8.7254e-01 | 8.7251e-01 | 2.6593e-05 8.2892e-01 7.7726e-01 7.2155e-01
5.9375e-01 | 8.2885e-01 | 8.2883e-01 | 1.6622e-05 7.7829e-01 7.2227e-01 6.6736e-01
6.7708¢-01 | 7.7940e-01 | 7.7940e-01 | 5.1134e-06 7.2329¢-01 6.6547¢-01 6.1505¢-01
7.6042¢-01 | 7.2455e-01 | 7.2456e-01 | 7.9178e-06 6.6465e-01 6.0790e-01 5.6571e-01
8.4375e-01 | 6.6467e-01 | 6.6469¢e-01 | 2.2457e-05 6.0308e-01 5.5059e-01 5.2032e-01
9.2708¢-01 | 6.0017¢-01 | 6.0021e-01 | 3.8493e-05 5.3936e-01 4.9452¢-01 4.7980e-01
9.8958e-01 | 5.4904e-01 | 5.4909e-01 | 5.1503e-05 4.9063¢-01 4.5390e-01 4.5307e-01

5 Conclusion

In this paper, we introduced the Miintz Legendre wavelets to approximate the
solution of a system of FIDEs and examined it by some numerical examples.
Calculated absolute errors for different values of £ and M indicated that by
increasing k and M, the absolute errors decrease. The algorithm presented
here can be easily used for different types of FIDEs.
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