Computing the eigenvalues of fourth order Sturm-Liouville problems with Lie Group method

Document Type : Research Article

Author

Faculty of Basic Sciences, Sahand University of Technology, Tabriz, Iran.

Abstract

‎In this paper, we formulate the fourth order Sturm-Liouville problem (FSLP) as a Lie group matrix differential equation. By solving this ma- trix differential equation by Lie group Magnus expansion, we compute the eigenvalues of the FSLP. The Magnus expansion is an infinite series of multiple integrals of Lie brackets. The approximation is, in fact, the truncation of Magnus expansion and a Gaussian quadrature are used to evaluate the integrals. Finally, some numerical examples are given.

Keywords


1. Abbasbandy, S. and Shirzadi, A. A new application of the homotopy analysis method: solving the Sturm-Liouville problems, Commun Nonlinear SciNumer Simulat, 16 (2011), 112-126.
2. Attili, B.S. and Lesnic, D. An efficient method for computing eigenele ments of Sturm-Liouville fourth-order boundary value problems, Applied Mathematics and Computation, 182 (2006), 1247-1254.
3. Blanes, S., Casas, F., Oteo, J.A. and Ros, J. The Magnus expansion and some of its applications, Physics Reports, 470 (2009), 151-238.
4. Bluman, G.W., Kumei, S. Symmetries and Differential Equations, Springer, New York, 1989.
5. Chanane, B. Accurate solutions of fourth order Sturm-Liouville problems, Journal of Computational and Applied Mathematics, 234 (2010), 3064-3071.
6. Ghanbari, K. On the isospectral beams, Electronic Journal of Differential Equations, 12 (2005), 57-64.
7. Gladwell, G. M. L. Inverse problems in vibrations, Kluwer academic, New York, 2004.
8. Greenberg, L. and Marletta, M. Numerical methods for higher order Sturm-Liouville problems, Journal of Computational and Applied Mathematics, 125 (2000), 367-383.
9. Greenberg, L. and Marletta, M. Oscillation theory and numerical solution of fourth order Sturm-Liouville problems, IMA J. Numer.Anal., 15 (3)(1995), 319-356.
10. Greenberg, L. A prufer method for calculating eigenvalues of selfadjoint systems of ordinary differential equations, Parts 1 and 2, University of Maryland, Technical Report TR 91-24, 1991.
11. Iserles, A. and Norsett, S.P. On the solution of linear differential equations in Lie groups, Numerical Analysis Report, University of Cambridge, 1997.
12. Iserles, A. On the global error of discretization methods for highly oscillatory ordinary differential equations, BIT, 42 (2002), 561-599.
13. Lie, S. and Engel, F. Theorie de Transformations gruppen, Teubner, Leipzig, 1893.
14. Miller, K.R. and Michel, N.A. Ordinary differential equations, Academic Press, New York, 1982.
15. Moan, P.C. Efficient approximation of Sturm-Liouville problems using Lie group methods, Numerical Analysis Report, University of Cambridge, 1998.
16. Olver, P.J. Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
17. Ledoux, V., Daele, M.V. and Berghe, G.V. Efficient numerical solution of the 1D schrodinger problem using Magnus integrators, IMA journal of Numerical Analysis, 30 (2010), 751-776.
18. Ledoux, V., Daele, M.V. and Berghe, G.V. Matslise: A Matlab package for the Numerical Solution of Sturm-Liouville and Schrodinger equations, ACM Transactions on Mathematical Software, 31 (2005), 532-554.
19. Taher, AHS., Malek, A., Masuleh SHM. Chebychev differentiation matrices for efficient Computation of the eigenvalues of fourth order SturmLiouville problems, Applied Mathematical Modeling, 37 (2013), 4634-4642.
20. Yucel, U. and Boubaker, K. Differential Quadrature method (DQM) and Boubaker polynomials expansion scheme (BPES) for efficient computation of the eigenvalues of fourth order Sturm-Liouville problems, Applied Mathematical Modelling, 36 (2012), 158-167.
21. Wafo Soh, C. Isospectral Euler-Bernoulli beams via factorization and the Lie method, International Journal of Non-Linear Mechanics, 44 (4)(2009), 396-403.
22. Zanna, A. On the numerical solution of isospecyral flows, Ph.D Thesis, University of Cambridge, 1998.
CAPTCHA Image