1. Bera, S.P., Maiti, A., and Samanta, G.P. A prey-predator model with infection in both prey and predator, Filomat 29(8) (2015), 1753–1767.
2. Cojocaru, M.G., Migot, T., and Jaber, A. Controlling infection in predator-prey systems with transmission dynamics, Infect. Dis. Model. 5 (2020), 1–11.
3. Diekmann, O., Heesterbeek, J. A. P., and Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885.
4. Heath, M.T. Scientific computing: An introductory survey, The McGraw Hill, New York, 2002.
5. Hethcote, H.W. The mathematics of infectious diseases. SIAM Review, 42 (2000), 599–653.
6. Hethcote, H.W., Wang, W., Han, L., and Ma, Z. A predator-prey model with infected prey, Theor. Popul. Biol. 66 (2004), 259–268.
7. Jana, S. and Kar, T.K. Modeling and analysis of a prey-predator system with disease in the prey, Chaos. Soliton. Fract. 47 (2013), 42–53.
8. Jiao, J.J., Chen, L.S., Nieto, J.J., and Angela, T. Permanence and global attractively of the stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey, Appl. Math. Mech-Engl. 4(3) (2008), 181–191.
9. Jones, J.H. Notes on R0, Standford University, 2007.
10. Hugo, A. and Simanjilo, E. Analysis of an eco-epidemiological model under optimal control measures for infected prey, Appl. Appl. Math. 14(1)(2019),117–138.
11. Kamien, M.I. and Schwartz. N.L. Dynamic optimization: The calculus of variations and optimal control in economics and management. Courier Corporation, 2012.
12. Kumar, S. and Kharbabda, H. Stability analysis of prey-predator model with infection, migration and vaccination in prey, arXiv:1709.10319 (2017).
13. Lenhart, S. and Workman, J.T., Optimal control applied to biological models, Chapman and Hall/CRC, Mathematical and Computational Biology Series, London UK, 2007.
14. Pan, S. Asymptotic spreading in a lotka-Volterra predator-prey system, J. Math. Anal. Appl. 407(2) (2013), 230–236.
15. Simon, J.S.H. and Rabago, J.F.T., optimal Control for a predator Prey Model with disease in The Prey Population, Malaysian J. Math. Sci. 12(2)(2018), 269–285.
16. Zhou, J. and Shi, J. The existence, bifurcation and stability of positive solutions of a diffusive Leslie–Gower predator-prey model with Hollingtype II functional responses, J. Math. Anal. Appl. 405(2), (2013), 618–630.
Send comment about this article