1. Cannon J.R. and Van de Hoek J. The one phase stefan problem subject to energy, J. Math. Anal. Appl. 86 (1982) 281-292.
2. Dehghan M. An inverse problem of finding a source parameter in a semi linear parabolic equation, Appl. Math. Model. 25 (2001) 743-754.
3. Dehghan M. Numerical solution of one-dimensional parabolic inverse problem, Appl. Math. Comput. 136 (2003) 333-344.
4. Fatullayev A. and Can E. procedures for determining unknown source parameter in parabolic equations, Math. Comput. Simulat. 54 (2000) 159-167.
5. Cannon JR., Lin Y. and Wang S. Determination of a control parameter in a parabolic partial differential equation, J. Aust. Math. Soc. B. 33 (1991) 149-163.
6. Ivanchov MI. and Pabyrivska NV. Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditions, Ukr. Math. J. 53 (2001) 674-684.
7. Ivanchov MI. Inverse Problems for Equations of Parabolic Type, VNTL Publishers: Lviv, Ukraine. 2003.
8. Namazov GK. Definition of the unknown coefficient of a parabolic equation with nonlocal boundary and complementary-conditions, Transactions of Academy of Sciences of Azerbaijan, Series of Physical-Technicaland Mathematical Sciences. 19 (1999) 113-117.
9. Sapagovas M. and Jakub˙elien˙e K. Alternating direction method for two dimensional parabolic equation with nonlocal integral condition, Nonlinear Anal. Modelling Control. 17(1) (2012) 91-98.
10. Sapagovas M. and Stikonien˙e O. ˇ Alternating-direction method for a mildly nonlinear elliptic equation with nonlocal integral conditions, Nonlinear Anal Modelling Control. 16(2) (2011) 220-230.
11. Aronszajn N. Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950) 337-404.
12. Geng F. Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. Math. Comput. 215 (2009) 2095-2102.
13. Mohammadi M. and Mokhtari R. Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. Comput. Appl. Math. 235 (2011) 4003-4011.
14. Geng F.and Cui M. A reproducing kernel method for solving nonlocal fractional boundary value problems, Appl. Math. Lett. 25 (2012) 818-823.
15. Mokhtari R., Toutian Isfahani F. and Mohammadi M. Solving a class of nonlinear differential-difference equations in the reproducing kernel space,Abstr. Appl. Anal. 2012 (2012) Articel ID 514103.
16. Mohammadi M. and Mokhtari R. A new algorithm for solving nonlinear Shr¨odinger equation in the reproducing kernel space, to appear in IJS &T-Transaction A.
17. Mohammadi M. and Mokhtari R. A reproducing kernel method for solving a class of nonlinear systems of PDEs, to appear in Math. Model. Anal.
18. Mohammadi M., Mokhtari R. and Panahipour H. A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers’ equations, Eng. Anal. Bound. Elem. 37 (2013) 1642-1652.
19. Cui M. and Lin Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science Publisher: New York. 2008.
20. Ismailova M. and Kancab F. An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination condi tions, Math. Meth. Appl. Sci. 34 (2011) 692-702.
Send comment about this article