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Abstract

We consider a class of singularly perturbed semilinear three-point boundary
value problems. An accelerated uniformly convergent numerical method is
constructed via the exponential fitted operator method using Richardson
extrapolation techniques to solve the problem. To treat the semilinear
term, we use quasi-linearization techniques. The numerical results are tab-
ulated in terms of maximum absolute errors and rate of convergence, and
it is observed that the present method is more accurate and ε-uniformly
convergent for h ≥ ε, where the classical numerical methods fail to give a
good result. It also improves the results of the methods existing in the lit-
erature. The method is shown to be second-order convergent independent
of perturbation parameter ε.
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1 Introduction

Singularly perturbed differential equations are typically characterized by the
presence of a small positive parameter ε multiplying some or all of the highest
order terms in differential equations. Such types of problems arise frequently
in mathematical models of different areas of physics, chemistry, biology, en-
gineering science, economics, and even sociology.

Boundary value problems including nonlocal conditions, which connect
the values of the unknown solution at the boundary with values in the in-
terior, are known as nonlocal boundary value problems. The study of this
kind of problem was initiated by Il’in and Miseev [18, 19], motivated by the
work of Bitsadze and Samarskii [4] on nonlocal linear elliptic boundary value
problems. These problems have been used to represent mathematical mod-
els of a large number of phenomena, such as problems of semiconductors
in electronics, the vibrations of a guy wire of a uniform cross-section, heat
transfer problems, problems of hydromechanics, catalytic processes in chem-
istry and biology, the diffusion-drift model of semiconducting devices, and
some other physical phenomena; see [1, 17, 25]. The existence and unique-
ness of the solutions to nonlocal boundary value problems have been studied
by many authors [3, 20]. Some approaches for the numerical solution of sin-
gularly perturbed nonlocal boundary value problems have been proposed in
[2, 6, 7, 11, 12, 13, 16, 21, 26]. Uniformly convergent numerical methods
of order second and high for solving different singularly perturbed problems
have been studied in [5, 9, 10, 14, 23, 27]. What makes the problem under
consideration challenging is that, it contains the perturbation parameter in
both diffusion and convection terms, that it contains semilinear source term,
and that it has three-point nonlocal boundary condition. To the best of our
knowledge, the problem under consideration has not been done using the ex-
ponentially fitted operator method. Motivated by the paper [8], we develop a
uniformly convergent numerical method for solving the singularly perturbed
problem under consideration.

2 Definition of the problem

Consider the following singularly perturbed problem of the form

Ly := ε2y′′(x) + εa(x)y′(x)− f(x, y(x)) = 0, 0 < x < l, (1)

with the given conditions
y(0) = A, (2)

L0y := y(l)− ϕ(y(l1)) = 0, 0 < l1 < l, (3)
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where ε, 0 < ε ≪ 1 is the perturbation parameter, A is a given constant, and
the functions a(x) ≥ a > 0 and f(x, y) are sufficiently smooth on [0, l] and
[0, l]×R, respectively. Moreover 0 < b ≤ ∂f

∂y ≤ β < ∞ and |dϕdy | ≤ k < 1.
The solution of y(x) of (1)–(3) has boundary layers at x = 0 and x = l

for ε near 0.
Equations of this type arise in mathematical problems in many areas of

mechanics and physics. Among these are the Navier–Stokes equations of
fluid flow at high Reynolds number, mathematical models of liquid crystal
materials and chemical reactions, shear in second-order fluids, control theory,
electrical networks, and other physical models [23, 24].

To obtain the numerical solution to (1)–(3), the well-known Newton’s
quasi-linearization techniques were used. This technique allows us to linearize
the semilinear problem into a linear problem, whose solution y(p)(x) with a
proper initial guess y(0) will converge to the original solution y(x).

So, after applying quasi-linearization technique for f(x, y(x)), we rewrite
(1)–(3) in the form

Ly := ε2y′′(x) + εa(x)y′(x)− b(x)y(x) = R(x), x ∈ Ω = (0, l), (4)

with the given conditions
y(0) = A, (5)

L0y := y(l)− ϕ(y(l1)) = 0, 0 < l1 < l, (6)

where b(x) = ∂f
∂y (x, ηy(x)), 0 < η < 1, and R(x) = f(x, ηy(x))− ηy(x)b(x).

In this article, we analyze an exponentially fitted operator scheme with
Richardson extrapolation techniques on uniform mesh for the numerical so-
lution of (4)–(6). Uniform convergence is proved in the discrete maximum
norm. Finally, we formulate the algorithm for solving the discrete problem
and give the illustrative numerical results.

3 Properties of continuous solution

The following lemmas are necessary for the existence and uniqueness of the
solution and for the problem to be well-posed.

Lemma 1. Let y(x) be the solution of (1)–(3). If a ∈ C1[0, l], then the
following inequality

∥y∥∞ ≤ C0 (7)

holds, where C0 = (1−γ)−1(|A|+|B|+b−1∥R∥∞), B = ϕ(0, ) R(x) = f(x, 0),
and ∥y∥∞ = max[0,l] |y(x)|.

Proof. For proof refer [8].

Lemma 2. Let yε be the solution of (Pε). Then, for k = 0, 1, 2, 3, 4,
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| y(k)ε (x) |≤ C

(
1 + ε−k

(
exp

(
−c0x

ε

)
+ exp

(
−c1(l − x)

ε

)))
, x ∈ [0, l],

(8)
holds fore the solution y(x) provided that ∂f

∂y − εa′(x) ≥ b and ∂f
∂x ≤ C

for x ∈ [0, l] and |y| ≤ C, where c0 = 1
2 [
√

a2(0) + 4b + a(0)] and c1 =
1
2 [
√
a2(l) + 4b− a(l)].

Proof. For proof refer [8].

4 Formulation of numerical scheme

We subdivide the domain Ω = [0, 1] into N equal number of subintervals, each
of length h. In this article, we develop the fitted operator finite difference
method to find a numerical solution to the problem (4). We use the theory
in the asymptotic method for developing the exponential factor.

In order to evaluate the fitting factor, we divide both sides of (4) by ε,
and we obtain

Ly(x) ≡ εy′′(x) + a(x)y′ + p(x)y(x) = g(x), 0 < x < ℓ,

y(0) = A,

L0y := y(ℓ) = θ, 0 < ℓ1 < ℓ,

(9)

where p(x) = − b(x)
ε , g(x) = R(x)

ε , and θ = φ(y(ℓ1)).

4.1 Left end boundary layer problem

The boundary layer occurs on the left side of the domain, that is, near x = 0.
To find the numerical solution of (9), we use the theory applied in the asymp-
totic method for solving singularly perturbed boundary value problems. From
the theory of singular perturbations given by O’Malley [24] and using Tay-
lor’s series expansion for a(x) about x = 0 and restriction to their first terms,
we get the asymptotic solution as

y(x) = y0(x) +
a(0)

a(x)
(A− y0(0))e

−
∫ x
0

(
a(x)
ε − p(x)

a(x)

)
dx +O(ε), (10)

where y0(x) is the solution of the reduced problem (obtained by setting ε = 0)
of (9) given by a(x)y′0(x) + p(x)y0(x) = g(x), with y(0) = A and y0(ℓ) = θ,
where θ = φ(y(l1)).

By taking Taylor series expansion for a(x) and p(x) about the point “0”
and simplifying them, we obtain
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y(x) = y0(x) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
x +O(ε). (11)

Now we divide the interval [0, 1] into N equal subinterval of mesh size h = 1
N

so that xi = ih, i = 0, 1, 2 . . . , N . From (11), we have

y(ih) = y0(ih) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
ih +O(ε).

Taking limit as h → 0 on both sides, we have

lim
h→0

y(ih) = y0(0) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
iρ +O(ε). (12)

Also, we discretized xi+1 = (i+ 1)h = ih+ h from (11), we obtain

y(ih+ h) = y0(ih+ h) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
ih+h +O(ε).

Taking limit as h → 0 on both sides, we have

lim
h→0

y(ih+ h) = y0(0) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
iρ+ρ +O(ε). (13)

Similarly for xi−1 = (i− 1)h = ih− h from (11), we have

y(ih− h) = y0(ih− h) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
ih−h +O(ε).

Taking limit as h → 0 on both sides, we have

lim
h→0

y(ih− h) = y0(0) + (A− y0(0))e
−
(

a(0)
ε − p(0)

a(0)

)
iρ−ρ +O(ε). (14)

To handle the effect of the perturbation parameter, artificial viscosity (expo-
nentially fitting factor σ(ρ)) is multiplied on the term containing the pertur-
bation parameter as

εσ(ρ)y′′i + a(xi)y
′
i + p(xi)yi = g(xi), (15)

with boundary conditions y(0) = A and y(ℓ)=θ. Next, we consider the
difference approximation of (9) on a uniform grid Ω

N
= {xi}Ni=0 and denote

h = xi+1 − xi.

Using the Taylor series expansion for y(x) about the point xi, this can be
written as

y(xi − h) ≈ yi−1 = yi − hy′i +
h2

2!
y′′i +O(h3), (16)

y(xi + h) ≈ yi+1 = yi + hy′i +
h2

2!
y′′i +O(h3). (17)
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For any mesh function yi, from (16) and (17), we obtain the following finite
difference operator: 

D−yi =
yi−yi−1

h ,

D+yi =
yi+1−yi

h ,

D0yi =
yi+1−yi−1

2h ,

D+D−yi =
yi+1−2yi+yi−1

h2 .

(18)

Then, applying the central and forward finite difference formula for the second
and the first derivative, respectively, on (9), we get

εσ(ρ)(D+D−y(xi)) + a(xi)(D
+y(xi)) + p(xi)y(xi) = g(xi). (19)

Using the difference operator in (19), we have

LN
ε yi = gi, (20)

with boundary conditions y(0) = A and y(ℓ) = θ.

From (19), we have

εσ(ρ)

(
yi−1 − 2yi + yi+1

h2

)
+a(xi)

(
yi+1 − yi

h

)
+p(xi)yi = g(xi), 1 ≤ i ≤ N

2
,

(21)
where ρ = h

ε .

Multiplying (21) by h, considering h small, and truncating the term
(g(xi)− p(xi)yi)h, we get

σ

ρ

(
yi−1 − 2yi + yi+1

)
+ a(xi)

(
yi+1 − yi

)
= h(g(xi)− piyi). (22)

By evaluating the limit of (22) as h approaches to zero and limh→0 h(gi −
piyi) = 0, we get

σ = −a(0)ρ
limh→0(yi+1 − yi)

limh→0(yi+1 − 2yi + yi−1)
. (23)

Substituting (12), (13), and (14) into (23) for solving the fitting parameter
σ and simplifying it, we obtain

σ1 =
ρa(0)

4

 (1− e−(
a2(0)−εb(0)

a(0)
ρ))

sinh2[(a
2(0)−εb(0)

2a(0) ρ)]

 . (24)
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4.2 Right end boundary layer problem

The boundary layer occurs on the right side of the domain, that is, near x = 1.
Assume that Ω

N denotes the partition of [0, ℓ] into N subintervals such that
0 = x0, x1, . . . , xN = 1 with xi = ih, h = 1

N i = 0, 1, 2, . . . , N . To find the
numerical solution of (9), we use the theory applied in the asymptotic method
for solving singularly perturbed boundary value problems. Assume that the
problem has the right layer. From the theory of singular perturbations given
by O’Malley [24] and using Taylor’s series expansion for a(x) about x = 1
and restriction to their first terms, we get the asymptotic solution as

y(x) = y0(x) +
a(1)

a(x)
(θ − y0(1))e

−
∫ 1
x

(
a(x)
ε − p(x)

a(x)

)
dx +O(ε), (25)

where y0(x) is the solution of the reduced problem (obtained by setting ε = 0)
of (9) given by a(x)y′0(x)+p(x)y0(x) = g(x), with y0(1) = θ. By taking Taylor
series expansion for a(x) and b(x) about the point “1” and simplifying them,
we obtain

y(x) = y0(x) + (θ − y0(1))e
−
(

a(1)(1−x)
ε

)
+O(ε). (26)

Now we divide the interval [0, 1] into N equal subintervals of mesh size h = 1
N

so that xi = ih, i = 0, 1, 2 . . . , N . From (26), we have

lim
h→0

y(ih) = y0(0) + (θ − y0(1))e

(
−a(1)( 1

ε−iρ)
)
+O(ε). (27)

Also, we discretization xi+1 = (i+ 1)h = ih+ h From (26), we have

lim
h→0

y(ih+ h) = y0(0) + (θ − y0(1))e

(
−a(1)( 1

ε−iρ)
)
+O(ε). (28)

Similarly for xi−1 = (i− 1)h = ih− h, we have

lim
h→0

y(ih− h) = y0(0) + (θ − y0(1))e

(
−a(1)( 1

ε−iρ)
)
+O(ε). (29)

Now we consider the second-order upwind finite difference scheme from (15).
We have

εσ(ρ)

(
yi−1 − 2yi + yi+1

h2

)
+ ai

(
yi − yi−1

h

)
+ piyi = gi. (30)

Multiplying (30) by h, considering h small, and truncating the term (g(xi)−
p(xi)yi)h, we get

σ

ρ

(
yi−1 − 2yi + yi+1

)
+ ai

(
yi − yi−1

)
= h(gi − piyi). (31)
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By evaluating the limit of (31) as h approaches to zero and using limh→0 h(gi−
piyi) = 0, we get

σ = −a(1)ρ
limh→0(yi − yi−1)

limh→0(yi−1 − 2yi + yi+1)
. (32)

Substituting (27), (28), and (29) into (32) for solving the fitting parameter
σ and rearranging it, we obtain

σ2 =
ρa(1)

4

 (e−(
a2(1)−εb(1)

a(1)
ρ) − 1)

sinh2[(a
2(1)−εb(1)

2a(1) ρ)]

 . (33)

Case (1): For the left layer, from the discrete form of (4) on the domain
[1, N

2 ], we have
ε2y′′i + εaiy

′
i − biyi = Ri. (34)

Using the central and forward finite difference formula on (34), we have

ε2σ1(ρ)

(
yi−1 − 2yi + yi+1

h2

)
+ εai

(
yi+1 − yi

h

)
− biyi = Ri.

Hence, the required finite difference scheme becomes(
ε2σ1(ρ)

h2

)
yi−1 +

(
−2ε2σ1(ρ)

h2
− ε

ai
h

− bi

)
yi +

(
ε2σ1(ρ)

h2
+ ε

ai
h

)
yi+1 = Ri.

(35)
The numerical scheme in (35) can be written as a three-term recurrence
relation by

Eiyi−1 + Fiyi +Giyi+1 = Hi, 1 ≤ i ≤ N

2
, (36)

where

Ei =

(
ε2σ1(ρ)

h2

)
, Fi =

(
−2ε2σ1(ρ)

h2
− ε

ai
h

− bi

)
,

Gi =

(
ε2σ1(ρ)

h2
+ ε

ai
h

)
, Hi = Ri.

Case (2): For the right layer, from the discrete form of (4) on the domain
(N2 , N − 1], we have

ε2y′′i + εaiy
′
i − biyi = Ri. (37)

Using the central and backward finite difference formula on (37), we have

ε2σ2(ρ)

(
yi−1 − 2yi + yi+1

h2

)
+ εai

(
yi − yi−1

h

)
− biyi = Ri.
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Hence, the required finite difference scheme becomes(
ε2σ2(ρ)

h2
−ε

a(xi)

h

)
yi−1+

(
−2ε2σ2(ρ)

h2
+ε

ai
h
−bi

)
yi+

(
ε2σ2(ρ)

h2

)
yi+1 = Ri.

(38)
The numerical scheme in (38) can be written as a three-term recurrence
relation by

Eiyi−1 + Fiyi +Giyi+1 = Hi,
N

2
< i ≤ N − 1, (39)

where

Ei =

(
ε2σ2(ρ)

h2
− ε

ai
h

)
, Fi =

(
−2ε2σ2(ρ)

h2
+ ε

ai
h

− bi

)
,

Gi =

(
ε2σ2(ρ)

h2

)
, Hi = Ri.

Next, in order to treat the boundary conditions, the following equations are
obtained: For i = 1, (36) becomes

F1y1 +G1y2 = H1 − E1A. (40)

For i = N − 1, (36) becomes

EN−1yN−2 + FN−1yN−1 +GN−1yN = HN−1. (41)

From (6) and (41), we obtain

EN−1yN−2 + FN−1yN−1 +GN−1ϕ(yN
2
) = HN−1. (42)

Therefore, the problem in (1) with given boundary conditions in (2)–(3), can
be solved using the scheme (36), (39), (40), and (42), which forms an N ×N
system of algebraic equations.

5 Uniform convergence analysis

In this section, we need to show the discrete scheme in (36) and (39) satisfies
the discrete minimum principle and uniform convergence.

Lemma 3 (Discrete Minimum Principle). Let Yi be any mesh function that
satisfies Y0 ≥ 0, YN ≥ 0 and LεYi ≤ 0, i = 1, 2, 3, . . . , N − 1. Then Yi ≥ 0,
for i = 0, 1, 2, . . . , N .

Proof. The proof is by contradiction. Let j be such that Yj = mini Yi, and
suppose that Yj ≤ 0. Clearly, j /∈ {0, N}. Yj+1 − Yj ≥ 0 and Yj − Yj−1 ≤ 0.
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Therefore,

LN
ε Yj =ε

(
Yj+1 − 2Yj + Yj−1

h2

)
+ aj

(
Yj+1 − Yj

h

)
+ pjYj ,

=
ε

h2
(Yj+1 − 2Yj + Yj−1) +

aj
h
(Yj+1 − Yj) + pjYj ,

=
ε

h2
((Yj+1 − Yj)− (Yj − Yj−1)) +

aj
h
(Yj+1 − Yj) + pjYj ,

≥0,

(43)

where the strict inequality holds if Yj+1 − Yj > 0. This is a contradiction,
and therefore Yj ≥ 0. Since j is arbitrary, we have Yi ≥ 0, for i =
0, 1, 2, . . . , N .

We proved above that the discrete operator LN
ε satisfies the minimum

principle. Next, we analyze the uniform convergence analysis.

Theorem 1. Let y(xi) and Yi be, respectively, the exact solution of (9)
and numerical solutions of (20). Then for sufficiently large N , the following
parameter uniform error estimate holds:

|LN (y(xi)− Yi)| ≤ Ch

(
1 + ε−4 max

1≤i≤N−1

(
exp

(
−a(l − xi)

ε

)))
. (44)

Proof. Let us consider the local truncation error defined as

LN (y(xi)− Yi) = εσ2(ρ)(y
′′(xi)−D+D−y(xi)) + a(xi)(y

′(xi)−D−y(xi)),
(45)

where εσ2(ρ) =
ρa(1)

4

[
(e

−(
a2(1)−εb(1)

a(1)
ρ)
−1)

sinh2[(
a2(1)−εb(1)

2a(1)
ρ)]

]
, since ρ = h

ε .

For fixed N = 1
h , taking the limit for ε → 0, we obtain

lim
ε→0

εσ(ρ) = lim
ε→0

ρa(1)

4

 (e−(
a2(1)−εb(1)

a(1)
ρ) − 1)

sinh2[(a
2(1)−εb(1)

2a(1) ρ)]

 = Ch,

where C is constant independent of h and ε.
Using Taylor series expansion, the bound for y(xi−1) and y(xi+1) at xi is

obtained as{
y(xi−1) = y(xi)− hy′(xi) +

h2

2! y
′′(xi)− h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h5),

y(xi+1) = y(xi) + hy′(xi) +
h2

2! y
′′(xi) +

h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h5).

We obtain the bound for{
|D+D−y(xi)| ≤ C|y′′(xi)|,
|y′′(xi)−D+D−y(xi)| ≤ Ch2|y(4)(xi)|.

(46)
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Similarly, for the first derivative term, we have

|y′(xi)−D+y(xi)| ≤ Ch|y′′(xi)|, (47)

where |y(k)(xi)| = supxi∈(x0,xN ) |y(k)(xi)|, k = 2, 3, 4.
Using the bounds in (46) and (47), we obtain

|LN (y(xi)− Yi) ≤ Ch3|y(4)(xi)|+ C|y′′(xi)|.

Now, using the bounds for the derivatives of the solution in Lemma (2), we
have

|LN (y(xi)− Yi)| ≤ Ch3

(
1 + ε−4 exp

(
−a(l − xi)

ε

))
+ Ch

(
1 + ε−2 exp

(
−a(l − xi)

ε

))
≤ Ch

(
1 + ε−4 max

1≤i≤N−1
exp

(
−a(l − xi)

ε

))
since ε−4 ≥ ε−2.

Lemma 4. For a fixed mesh and for ε → 0, it holds

lim
ε→0

max
1≤i≤N−1

exp

(
−axi

ε

)
εm

= 0, m = 1, 2, 3, . . . ,

lim
ε→0

max
1≤i≤N−1

exp

(
−a(1−xi)

ε

)
εm

= 0, m = 1, 2, 3, . . . .

Proof. Consider the partition [0, 1] := {0 = x0 < x1 < · · · < xN−1 < xN =
1} for the interior grid points, we have

max
1≤i≤N−1

exp

(
−axi

ε

)
εm

≤
exp

(
−ax1

ε

)
εm

=

exp

(
−ah

ε

)
εm

,

max
1≤i≤N−1

exp

(
−a(1− xi)

ε

)
εm

≤
exp

(
−a(1− xN−1)

ε

)
εm

=

exp

(
−ah

ε

)
εm

,

as x1 = 1− xN−1 = h. The repeated application of L’Hospital’s rule gives

lim
ε−→0

exp

(
−ah

ε

)
εm

= lim
r= 1

ε→∞

rm

exp(ahr)
= lim

r= 1
ε→∞

m!

(ah)m exp(ahr)
= 0.
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Theorem 2. Let y(xi) and Yi be the exact solution of (9) and numerical
solutions of (20), respectively. Then, the following error bound holds

sup
0<ε<<1

|(y(xi)− Yi)| ≤ Ch. (48)

Proof. By substituting the results in Lemma (4) into Theorem (1) and ap-
plying the discrete minimum principle, we obtain the required bound.

Richardson extrapolation
Here, we apply the Richardson extrapolation technique to accelerate the rate
of convergence of the proposed scheme. Richardson Extrapolation is a conver-
gence acceleration technique, which involves a combination of two computed
approximations of solution. From (48), we have

y(xi)− Yi ≤ Ch, (49)

where y(xi) and Yi are exact and approximate solutions, respectively, and C
is constant independent of ε and h. Let Ω2h be the mesh obtained by bisecting
each mesh interval in Ωh and denote the approximation of the solution on
Ω2h by Y 2h

i . From (49), we have

y(xi)− Yi
∼= Ch+Rh, xi ∈ ΩN , (50)

So, this works for any h
2 ̸= 0 gives

y(xi)− Yi
2h ∼= C

h

2
+R2h, xi ∈ Ω2h, (51)

where the remainders, Rh and R2h are O(h2). Equations (50) and (51) lead
to

y(xi)− (2Y 2h
i − Yi) ∼= Ch2,

which gives that
Y ext
i = 2Y 2h

i − Yi (52)

is also an approximate solution. The total truncation error for the approxi-
mate solution in (52) becomes

sup
0<ε<<1

|(y(xi)− Yi)| ≤ Ch2. (53)
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6 Numerical example and results

To validate the established theoretical results, we perform numerical experi-
ments using the model problems of the form in (1)–(3).

Example 1. Consider the model singularly perturbed boundary value prob-
lem

ε2y′′(x) + ε(1− x

2
)y′(x)− (1 + x2 + 2y − exp(−y)) = 0, 0 < x < 1,

subject to the boundary conditions

y(0) = 0, ϕ(y) = cos(
πy

4
) + 2, l1 =

1

2
.

Having yj ≡ yhj (the approximated solution obtained via fitted operator
finite difference method) for different values of h and ε, the maximum errors.
Since the exact solution is not available, the maximum errors (denoted by
Eh

ε ) are evaluated using the double mesh principle for fitted operator finite
difference methods using formula

EN
ε := max

0≤j≤N
|yhj − y2h2i |.

Furthermore, we will tabulate the ε-uniform error

EN = max
0<ε≤1

EN
ε .

The numerical rate of convergence and the ε-uniform rate of convergence are
computed using the formulas

RN =
log(EN )− log(E2N )

log(2)
.

ε N = 16 N = 32 N = 64 N = 128 N = 256
10−4 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
10−8 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
10−12 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
10−16 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
10−20 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
EN 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
RN 1.9767 1.9893 1.9950 1.9976

Table 1: Maximum absolute errors and rates of convergence for Example 1.
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N = 16 N = 32 N = 64 N = 128 N = 256
Present
EN 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
RN 1.9767 1.9893 1.9950 1.9976

Method in [8]
EN 0.01388073 0.00955129 0.00550127 0.00314426 0.00176922
RN 0.69 0.75 0.81 0.91

Table 2: Comparison of maximum absolute errors and rate of convergence for Example
1 at different number of mesh points.

N = 16 N = 32 N = 64 N = 128 N = 256
After
EN 3.3238e-03 8.4445e-04 2.1268e-04 5.3355e-05 1.3361e-05
RN 1.9767 1.9893 1.9950 1.9976

Before
EN 6.1832e-02 3.2578e-02 1.6711e-02 8.4619e-03 4.2576e-03
RN 0.9245 0.9631 0.9817 0.9909

Table 3: Maximum absolute errors and rate of convergence before and after Richardson
extrapolation for Example 1 at different number of mesh points.
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Figure 1: ε-uniform convergence of exponentially fitted operator method in log-log
scale before and after Richardson Extrapolation, respectively.

7 Discussion and conclusion

This study introduced an accelerated exponentially fitted finite difference nu-
merical method for solving singularly perturbed semilinear differential equa-
tions with nonlocal boundary conditions. The behavior of the continuous
solution of the problem was studied and shown that it satisfies the continu-
ous stability estimate and the derivatives of the solution are also bounded.
The numerical scheme was developed on the uniform mesh using exponential
fitted operator method in the given differential equation. The stability of the
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Figure 2: The ε-uniform convergence of the method in log-log scale before and after
extrapolation at the same plot for Example 1.

developed numerical method was established, and its uniform convergence
was proved. To validate the applicability of the method, a model problem
was considered for numerical experimentation for different values of the per-
turbation parameter and mesh points. The numerical results were tabulated
in terms of maximum absolute errors, numerical rate of convergence, and
uniform errors (see Table 1) and to show the performance of our scheme
after Richardson extrapolation, we compared both the maximum absolute
error and the rate of convergence of the scheme before and after Richardson
extrapolation (see Table 3). To visualize our result more, we plotted the log-
log plot of maximum absolute error before and after Richardson in different
plane and in the same plane in Figures 1 and 2, respectively. The method
was shown to be ε-uniformly convergent with the order of convergence O(h2).
The performance of the proposed scheme was investigated by comparing it
with prior study (see Table 2). The proposed method gave more accurate,
stable, and ε-uniform numerical results.
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