1. Agarwal, R.P., O’Regan, D., Tisdell, C. and Wong, P.J.Y. Constant-sign solutions of a system of Volterra integral equations, Comput. Math. Appl. 54 (1) (2007) 58–75.
2. Brunner, H. and van der Houwen, P.J. The numerical solution of Volterra equations, Amsterdam etc., North-Holland 1986.
3. Caliò, F., Garralda-Guillem, A.I., Marchetti, E. and Ruiz Galán, M. Numerical approaches for systems of Volterra-Fredholm integral equations, Appl. Math. Comput. 225 (2013) 811–821.
4. Gautschi, W. Orthogonal polynomial, computation and approximation, Oxford science publications 2004.
5. Iwami, S., Takeuchi, Y., Korobeinikov, A. and Liu, X. Prevention of the avian influenza epidemic: What policy should we choose?, J. Theor. Biol. 252 (4) (2008) 732–741.
6. Iwami, S., Takeuchi, Y. and Liu, X. The avian-human influenza epidemic model, Math. Biosci. 207 (1) (2007) 1–25.
7. Katani, R. and Shahmorad, S. A block by block method with Romberg quadrature for the system of Urysohn type Volterra integral equations, Comput. Appl. Math. 31 (1) (2012) 1–13.
8. Koekoek, R., Lesky, P. and Swarttouw, R. Hypergeometric orthogonal polynomials and their q-analogues, Springer 2010.
9. Linz, P. Analytical and numerical methods for Volterra equations, SIAM Philadelphia 1985.
10. Maleknejad, K. and Ostadi, A. Numerical solution of system of Volterra integral equations with weakly singular kernels and its convergence analysis, Appl. Numer. Math. 115 (2017) 82–98.
11. Poland, G.A., Jacobson, R.M. and Targonski, P.V. The avian and pandemic influenza: an overview, Vaccine 25 (2007) 3057–3061.
12. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. and Kawaoka, Y., The avian flu: Influenza virus receptors in the human airway, Nature 440 (2006) 435–436.
13. Trefethen, L.N. Approximation theory and approximation practice (Applied Mathematics), society for industrial and applied mathematics 2013.
Send comment about this article