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Abstract

Many phenomena in various fields of physics are simulated by parabolic
partial differential equations with the nonlocal initial conditions, while there
are few numerical methods for solving these problems. In this paper, the
Ritz—Galerkin method with a new approach is proposed to give the exact and
approximate product solution of a parabolic equation with the nonstandard
initial conditions. For this purpose, at first, we introduce a function called
satisfier function, which satisfies all the initial and boundary conditions. The
uniqueness of the satisfier function and its relation to the exact solution are
discussed. Then the Ritz—Galerkin method with satisfier function is used to
simplify the parabolic partial differential equations to the solution of algebraic
equations. Error analysis is worked by using the property of interpolation.
The comparisons of the obtained results with the results of other methods
show more accuracy in the presented technique.
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1 Introduction

Various problems arising in geology [19], heat conduction [6, 7, 20], plasma
physics [16], chemical engineering [12], thermostatic [30], and hydrodynam-
ics [11], can be reduced to nonclassical initial-boundary value problems. The
investigation of a nonclassical problem with nonlocal initial condition is con-
sidered in this article. Nonclassical problems with nonlocal initial conditions,

*Corresponding author

Received 9 October 2019; revised 12 February 2020; accepted 14 February 2020

Zahra Barikbin

Department of Applied Mathematics, Faculty of Science, Imam Khomeini International
University, Qazvin, Iran, 34149-16818. e-mail: barikbin@sci.ikiu.ac.ir

121



122 7. Barikbin

which are generalizations of the classical or time-periodic problems, can be
used in science with better results than the classical initial condition. Nonlo-
cal initial conditions are useful in the modeling of radionuclides propagation
in Stokes fluid, sewage causing pollution processes in rivers and seas, and
diffusion in porous media; see [17, 25, 29].

The following parabolic equation with nonlocal initial condition is con-
sidered in this paper:

o _ v
ot 042

with boundary conditions

+ oy, t), 0<~vy<1l, 0<t<T, (1)

v(0,t) = ho(t), 0<t

IN

, (2)

T
T, 3)

v(L,t) = hi(t), 0<t

IN

and the nonlocal initial condition
N

v(1,0) =Y N (Mo Th) + x (),
j=1

0<~v<1l, 0<Thi<To<---<Ty=T, (4)

The function v should be found, but ¢, ko, b1, x, and A; are known functions.

The multiplier method, semi-group theory, the maximum principle, and
potential theoretical representation of the solution are applied to prove the
existence and uniqueness of the above problem; see [8, 10, 3, 4, 5, 9, 24].
There are many publications about numerical methods for parabolic par-
tial differential equations with classical initial condition and with nonlocal
boundary conditions, but there are few numerical methods for nonstandard
initial condition problem presented here [13, 14, 15, 22]. Therefore, it is sig-
nificant to propose numerical methods for this problem. Dehghan [13, 14]
concentrated on finite difference schemes to solve problem (1)—(4). The im-
plicit collocation technique is applied for solving the above problem in [15].
Recently, in [22], the authors analyzed finite difference schemes for solving
(1)—(4).

Several partial differential equations are numerically solved by Ritz and
Galerkin method [31, 32]. In the Ritz—Galerkin method, applying the ap-
propriate satisfier function has been important; see, for instance, [33, 34, 35,
2, 21, 26, 1]. Utilizing satisfier function that fulfills all the problem condi-
tions helps to satisfy the problem conditions quickly, in addition, it leads to
a smaller system of algebraic equations and reduces the time of computation.

In this paper, we concentrate on satisfier function of (2)—(4). The unique-
ness of the satisfier function and its relation to the exact solution are discussed
in some theorems. Moreover, the Ritz—Galerkin method in the Bernstein
polynomial basis applying the satisfier function is utilized to give an ap-
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proximate solution of (1)—(4). The comparison of the obtained results with
those results obtained by [13, 14, 22] shows more efficiency of the presented
technique.

This paper is separated into the following sections: In Section 2, the
satisfier functions for (2)—(4) are introduced. Theorems on the uniqueness of
product satisfier functions are proven and used to obtain the exact solution
of the problem. Moreover, the Ritz—Galerkin method with satisfier function
is applied for solving the problem numerically. Some results concerning the
error analysis are obtained in Section 3. In Section 4, we apply these results
to solve three nonlocal initial condition problems. Section 5 is dedicated to
the conclusion.

2 Satisfier function for Ritz—Galerkin method

The solution v(7y,t) is approximated with the following series in the Ritz
method:

n m

0y, 1) =Y by (v, 1)+ 0y 1), (v 1) €[0,1] x [0,T),  (5)

=0 j=0

in which o;;(v,t) = v(v — 1) (7)p;(t), where p;(v)pj(t) are
basis functions. The function 17(]7, is called the satisfier function. In this

study, we take p;(7y) the Bernstein polynommlb in [0, 1]. What is important in
the Ritz method is to find a proper satisfier function. The satisfier function
is an arbitrary function that satisfies all problem conditions [35]. Satisfier
functions are not unique, and the construction of these functions is often
based on interpolation techniques. Here we focus on the construction of
satisfier function for one-dimensional parabolic equation with the nonlocal
initial condition.
We assume that the compatibility conditions

ho(0 )+ Z 2 (0)ho (T, (6)

N

h1(0) = x(1) + Y A (D)ha(Ty), (7)

Jj=1

are satisfied and define the satisfier function 7(~, t) that satisfies the boundary
conditions (2), (3), and the nonlocal time weighting initial condition (4) when

N
ho(0) = > A (Mho(T) #0,  0<y <1,
j=1
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07 1) = a(1)ho(t) + 1 (1)
when
N
h(0) = SN (I(T) £0, 0=~ <1,
L n(7.1) = (1= 7)ho(t) + b(y)ha (£)
and when

Jj=1 j=1
as
n(y,t) = (1 = yho(t) +vhi(t) + c(t)x(7),
where
a(v):x(v)—xgl( )+Z] L A ha(Th)y
ho(0) = 32004 A (7)ho(T))
b(v):XW)—( 7)h ()+ZJ1 (N =)ho(Ty)
h(0) = S50, A (1) (T)) ’
N . \N
=1 ’

Theorem 1. If at least one of the values ho(0) — Z;V 1A (1) ho(T;) and

h1(0) — Z;V 1 Aj(7)h1(T}) are not equal to zero in [0,1], then the product
satisfier functlon for (2) — (4) is unique.

Proof. Suppose that
N
ha(0) =Y " Ni(y)ha(Ty) #0 (8)
j=1

and that the product functions A;(y)As(t) and Fy(v)Fa(t) satisty (2) — (4).
Then
A1(0)As(t) = F1(0)Fa(t),

A (1)Ax(t) = Fi(1)Fy(t), 9)

N
AL(7)42(0) = FL(7)F2(0) = 3 X (M (AL(1)A2(Ty) = FL(7) Fa(T))). - (10)
j=1

From (9), in particular, we have
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A(DAs(Ty) = FL(1) F(T)),  Ai(1)A2(0) = F1(1)F5(0). (11)

By multiplying (9) by (10) and using (9) and (11), we have

N
(Ar (1) Az ()= Fy(7) Fa(£)) 11 (0) = (A1 (9) A ()= Fy(7) Fa (1) O A (1) (T)).
j=1
Thus
(A1(7)A2(t) — Fi(v)F2(t))(h —(Z)\ (Mhi(T5)) = 0;

Jj=1
therefore from (8), we get
Ar(7)Az(t) = Fi(7)F(?).

In a similar way, the other case hy(0) — Zﬁv 1 Aj(M)ho(T5) # 0 is proved. [

Theorem 2. Suppose that hy(0) — Zjvzl Aj(Mh(T;) #0, 0<~vy<1and
that

N N
[11(0) = > X\ (0)ha(T))ho(£) = [ho(0) = Y A (0)ho(TH)Iha(t).  (12)
j=1 j=1
Then the unique separable satisfier function for (2) — (4) is given by

X(y)ha(t) .
h1(0) — 22\7:1 Aj(7)ha(T5)

77(77 t) =

Proof. From compatibility condition (7), the function 7(y,t) satisfies the
boundary condition (3) obviously. Now let ho(0) — E;\/:l Aj(0)ho(Ty) # 0.
Then by using (12) and the compatibility condition (6), n(v,t) satisfies the
boundary condition (2) and when hg(0) — Zjvzl A;j(0)ho(T;) = 0, from (12),
we have ho(t) = 0. Thus from the compatibility condition (6), we obtain
Xx(0) = 0 and condition (2) also is fulfilled. In addition, n(v,t) satisfies the

initial condition (4), because
X(7)h1(0)
h1(0) = S22, Ay (9)ha(T))
X(DR1(0) = X(¥) S0y A (N1 (T3) + x(9) S0, Ay (1) ha (T3)
ha(0) = Y200y Aj(9)ha(T5) '

n(v,0) =

Hence
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N

O

Theorem 3. Suppose that hy(0) — Zjvzl Aj(7)ho(T;) # 0 and that

N

N
[h1.(0) = > " X\i(0)ha (Ty)]ho(t) = [ho(0) = > X;(0)ho(T))}ha (2).

j=1 Jj=1
Then the unique separable satisfier function for (2) — (3) and (4) is given by

X(7)ho(t)

n(y,t) = 5 .
ho(0) = 3252 A (Mho(Ty)
Proof. The proof is similar to the previous theorem. ]

Now we consider the approximation (5) and apply the following Galerkin
equations to obtaining coefficients b;;:

o0 9% . .
< E—W—Qﬁ(%t)vPi.,n(’Y)Pj.,n(t) >= 07 (Z - 0,...,71), (J - 07'-'vm)a

where <,> is defined as

2 ~

LT oo 9%
N /O /0 (E B 87»-)/2 o qb(’y’t))pi,n(’)/)pj,m(t)dtd’y.

The coefficients b;;(i =0,...,n)(j = 0,...,m) are obtained with solving
algebraic equations system (13).

Now let ho(t) = h1(t) = 0 and let a product form for the satisfier function
be taken. Then it can be denoted as

n(v, ) = f(Mg(?). (14)

Substituting the function (14) in to conditions (2)—(3), gives the following
conditions on f(v):

f(0)=0, f(1)=0.
On the other hand, from the compatibility conditions (6) and (7), we have
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Therefore, we can conclude that one of the options for the function f(vy) can
be x(7), and for fulfilling the initial condition (4) we choose g(t) such that

N
g(0) =1+ Z A (Mg(Ty). (15)
Therefore
n(y,t) = x(v)g(t), (16)

with condition (15) is a satisfier function for (2)—(4).

It is noteworthy that if ho(t) = hi(t) = 0 and x(y) # 0, then we can
approximate the product solution as

By, ) = X(Mh(t) = x(7) D_ bipin(t)- (17)
i=0

This approximation supplies higher adaptability in the nonlinear initial and
boundary conditions. Then, with the Galerkin equations and

n N n
D bipin(0) = (LY AN Y bipin(Ty)) =0, (18)
i=0 j=1 i=0

the coefficients b; are specified. If we choose Bernstein polynomials for basis
functions p; »(t), then from properties of Bernstein polynomials, equation
(18) is equal to the following equation:

N
bo — (140, Y Ai(y) =0.

j=1

On the other hand, When% is a constant, the separable satisfier function

is also the solution of the problem(1)—(4) and the exact solution will also be

obtained from (16) with

(), [t 90 s) exp(— )

g(t) = eXp(Mt)(/ —
xX() "o x(7)

such that ¢ can be obtained from the following condition:

ds + c),

N
9(0) = 1+ 3 X (No(T)) (19)

Also if ho(t) = hi(t) = x(v) = 0, then we can try to find the following
approximation for the solution of the problem:
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o(v,t) = AMg(t) = A Y bipin(t),
i=0

and A(vy) is selected such that A(0) = A(1) = 0. For example, v(y — 1) and
sin(my) are two selections for A(vy). Note that some times ¢(v,¢) in (1) can
help us to obtain an appropriate selection for A(vy). Then, the expansion
coefficients b; are specified with the Galerkin equations and the following

equation:
N

bo —bn Y _ Aj(y) = 0.
j=1

3 Error analysis

In the current section, we analyze the error of the proposed method. We
obtain an estimate of the error norm of the best approximation of a smooth
function of two variables, on [0, 1] x [0, 1], by Bernstein polynomials.

Lemma 1. Let f(v,t) be a sufficiently smooth function in [a,bd] X [¢,d]
and let p,_1.m-1(7,t) be the interpolating polynomial to f(z,¢) at points
(i, t;), where v;, ¢ =0,1,...,n—1, are the roots of the n — 1-degree shifted
Chebyshev polynomial in [a,b] and t;, 7 = 0,1,...,m — 1 are the roots of
the m — 1-degree shifted Chebyshev polynomial in [¢, d]. Then [18, 23]

" f(,t)

(b _ a)'n,
ox™ !

22T (5 1)€lasb) X [oyd)
— \ym 2
n (d AC) nax | O™ f(vst) |
ml!22m—1 (4 t)e[a,b] x [c,d] otm
(b—a)t(d—c™ max omtmf(y,t)
mIn!22(n+m)—2 ( 1yc(a,b]x|c,d] otmoyn

| f(77 t) _pnfl,mfl(’% t) |S |

Theorem 4. Suppose that fnm(v,t) = 37_o 27 bijoij (v, 1) = CTW(y,t)
is the Bernstein expansion of the real sufficiently smooth function f(v,t) €
[0,1] x [0, 1]. Then, there exist real numbers ¢y, ¢z, and ¢z such that

c1 4 c2 4 c3
(n+1)122n+L © (m  1)122m+L (4 1)(n + 1)122(n+m)+27

”f_fn,m(’}/v t)||2 < (20)

where s
"t
— <
(%t)er[%?i}](x[o,l] gyt |< e,
G F(y
| # I< c2,
(7,t)€[0,1]x[0,1] otm

8n+m+2 ot
max —f(f)/) |_ c3.
(v,t)€[0,1]x[0,1] | OtmH1lgyntl
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Proof. Let pp, m(7,t) be the interpolating polynomial to f at the roots of the
Chebyshev polynomial. Then from the definition of the best approximation,
we have

1f (s t) = fam(v, Oll2 < [ F (1 8) = Pam (7, ) 2.

Therefore by Lemma 1, we obtain

/ / (v,t) — CT WU (v, t))?dydt

S/ / [f(’%t) _pn,m(’%t)]Qd'ydt
(v, 1)

/ / n+1 '22"“ (el oyl |
am+1f(% )

(m + 1)'22m+1 (-, t)e[Oai)](x [0,1] otm+1 |
! I f 1)
- J\ND/ d~dt
* (m + 1)!(n + 1)!122(ntm)+2 ('y,t)er[r(l)?i}]{x [0,1] | otm1gyntl [y

< c1 . ) L c3 2
Sl 0122 T ot D122 T (ot 1)i(n + 1)122m+2

and this completes the proof. ]

Remark 1. In the special case when n = m, we have

C3 ) 1
(n+ 1)1227+17 (n 4 1)1220+ 1

”f(77t) - fn,n(77t)||2 < (Cl +co+

Therefore when considering the upper bound of the error, given by (20), the
term containing c3 can be neglected and we have

1) = Fan(r D]z = O(W)-

Remark 2. Let f(¢) € C"[0,1] and let f,(t) = Z bipi.n(t) be the Bern-
stein expansion of f(¢). Then

1
(n + 1)122n+1

1F(t) = fa(®l2 = O( )-

Now let Y;, ,, be the space of bivariate polynomials of degree less than or
equal to n on v and degree less than or equal to m on ¢ such that the

Ritz—Galerkin approximation belongs to it. The error norm of the numerical
results obtained from the Ritz—Galerkin method tends to zero with the same
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convergence rate as the error norm of the best approximation of the exact
solution in Y, ,,, [27, 28], which is confirmed by the obtained results in the
next section. Hence we present the following theorem.

Theorem 5. Suppose that v(7,t) is the exact solution of (1)—(4) and that
0(,t) is the approximate solution (5) with (m = n). Then

Jo000) = 0l = Oy

4 Numerical examples

In this section, we report some results of our numerical calculations using the
methods presented in the previous section for finding the exact and approx-
imation solutions of (1) — (4). We select Examples 1 and 2 of [13, 14, 15, 22]
and compare our approximation results. We use the package of Mathematica
version 11, with the following hardware configuration: Intel(R) Core(TM)
i3 — 2100 CPU, 8 GB of RAM, 64-bit Operating System (Windows 7) for
numerical calculations in all examples. The approximate L? norm of abso-
lute error and the maximum norm of the absolute error are, respectively,
calculated by

1 T 1 T
2 _ 2 _ _% 2
le(y. t)|2. = /0 /0 (v, t)dtdy = /0 /0 (0(7 1) — D07, 8))2dtdry

and
Fyo = ma e(y,t)| = ma v(y,t) — (v, 1)
i 0<~/<1,0}it<T| ()] 0<'y<1,())it<T| (1) (1)l
Moreover we introduce the notation A, = W According to the pre-
vious section, A, has the same asymptotic behavior as the error norm of the
numerical results, which is confirmed by the results in the tables.

Example 1. Consider (1)-(4) with N = 2, and let
¢y, t) = (m* = 1) sin(my) exp(~t),

v(7,0) = v(v,T1) —v(, T2) + x(7),
X(7) =sin(my)(1 — e — ™)
ho(t) =0, hi(t) =0,
Ty =05, T,=1.0,
AM(y) =1L A(y) = —1.

i
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for which the exact solution is [13, 14, 15, 22]:

v(7,t) = sin(ny) exp(—t).

The results of errors evaluated for different values of n by using the
method presented in this article with the truncated series (17), together with
CPU time are shown in Table 1. In Figure 1, the absolute difference between
the exact and approximate solution for n = 5 is shown.

In [22], Martin-Vaquero and Sajavicius employed the two-level finite dif-
ference schemes to solve this problem for different values of h and 7, where h
and 7 are space and time step sizes, respectively. The best absolute error of
the approximate solutions at some different points reported in [22] is shown
in Table 2 and compared with presented method with n = 7.

The best errors in L? norm obtained in [13] and [14] for solving this
problem using finite difference schemes with several choices of h, are shown
in Table 3.

Table 1: Absolute errors and L? norm of errors for Example 1

y=t n=1 n=3 n=>5 n="7
0 0 0 0 0
0.1 8.77648 x 1072 | 5.50078 x 10" | 8.63336 x 1073 | 1.22592 x 10~°
0.2 1.54731 x 10~ T | 2.9701 x 10=° | 2.10798 x 10~7 | 3.87638 x 10~ 1"
0.3 1.89538 x 10~ T | 1.10471 x 10~ % | 9.06801 x 10~% | 5.27107 x 10~ 1°
0.4 1.88218 x 1071 | 2.3564 x 10~% | 4.16751 x 10~ 7 | 1.47424 x 10~°
0.5 1.54818 x 10~ 1 | 2.21861 x 10~% | 5.25682 x 10~7 | 1.29762 x 10~°
0.6 1.0049 x 10T | 6.15521 x 1077 | 8.80609 x 10~7 | 9.66877 x 10~ 1°
0.7 4.12702 x 1072 | 1.27031 x 10~* | 4.84358 x 107 | 1.08301 x 10~°
0.8 5.05864 x 10=3 | 1.89116 x 10=71 | 2.55435 x 10~7 | 6.65846 x 10~ 10
0.9 2.24724 x 1072 | 7.97571 x 10~5 | 1.52571 x 10~7 | 2.07613 x 10~ 10
1 0 0 0 0
An 6.25 x 1072 3.25521 x 10~T | 6.78168 x 10~7 | 7.56884 x 10— 10
errors in LZ norm | 1.3015 x 10~ | 1.35747 x 10~% | 3.08435 x 1077 | 9.2949 x 1077
CPU Time 0.374 s 0.39 s 0.39 s 0.405 s

Table 2: Absolute errors for (t = 1) and different values of 4 for Example 1

¥ Scheme 1 in [22] Scheme 2 in [22] Scheme 3 in [22] Presented method
0.25 2.89742 x 1076 2.32464 x 1070 9.99528 x 10~ 1T 5.12468 x 10~
0.5 | 4.09758 x 106 3.28755 x 1070 1.41368 x 10~ 7.24995 x 10~ 1T
0.75 2.89742 x 1076 2.32464 x 1070 9.99524 x 10~ 1T 5.12648 x 10~

It is worth pointing out that since the exact solution for v(v,t) is sepa-

rable, x(7) # 0, and % is a constant, from (2) and (19), we have

exp(—t)

g(t) = =

e — e T2)’
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x10~7

Figure 1: The graph of the absolute error with n = 5 for Example 1.

Table 3: The best errors in L? norm obtained from different methods and presented
method for Example 1

Presented FTCP[13] BTCS[13] Crank—Nicolson[1B|Crandall’s[13]
method with
n=2~6
8.9 x107° 5.0 x 107° 6.0x 10~ 6.1 x 107° 1.1x 1077
Saulyev I[13] | Saulyev Three-point FTCS | Dufort-Frankel | (1,3,1)

T1[13] [14] [14] Scheme|[14]
2.0 x 1071 3.0 x 1071 2.5 x107° 4.0 x 107 1.2 x 10°°

Therefor we can obtain the exact solution v(v,t) = x(v)g(t) = sin(7y) exp(—t).

Example 2. In this example, the functions ¢(v,t), ho(t), h1(t), and x(v) are
chosen such that

v(7,t) = (sin(my) + cos(my) +2y — Le ™",

with initial condition

v(7,0) = Aoy, T1) + x(v),

is the exact solution of the problem; see [22].

The maximum norms of the absolute error (Ey) obtained with T =
1,77 = 0.9, and A; = —10, computed for various values of n using the
truncated series (17) and the method in [22] are compared in Table 4. In
addition, CPU time for different values of n is listed in this table. In Figure
2, the exact and approximate solutions of v(~,t) in t = 0.5 for n = 6 are
shown.

Example 3. In the last example, we solve equations (1)—(4) with N =1 and
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o) approximation

out[36]= 0.3}

Figure 2: Exact and approximate solutions of v(v,t) in ¢ = 0.5 for Example 2.

Table 4: Maximum norms of the absolute error for Example 2

Methods in [22] Our method
The best reported E Eo CPU
Time
7 = 1/200, h = 1/400 5.946431 x 10~4 n=3 1.88002x10~%7 0.297s
7 =1/1000, h = 1/400 2.404325 x 107 n=>5 225173 x 107 0.343s
7 =1/2000, = 1/400 2.424209 x 10~° n="7 227617x107% 0.375s

x(7) =0,
ho(t) =0,
hi(t) =0,
for which the exact solution is[10]:
sin(my) exp(t
o) - ) 0l)

The results of errors obtained with 7 = 1 and A\; = e~! computed for

various values of n together with CPU time using the method presented in
this article with the truncated series (2), with A(y) = sin(my) are shown
in Table 5. In Figure 3, the exact and approximate solutions of v(v,t) in
t = 0.5 for n = 7 are shown. The absolute difference between the exact and
approximate solution for n = 5 is shown in Figure 4.
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0.6 ]
os5f .
04f .

03 ; approximation é
0.2 ]
0.1 ]
0.0 -4 | | , | | ]
0.0 0.2 04 0.6 0.8 1.0
Figure 3: Exact and approximate solutions with n = 7 for Example 3.
Table 5: Absolute errors and L2 norm of errors for Example 3
v=t n=1 n=3 n=>5 n="7
0 0 0 0 0
0.1 4.9854 x 1073 | 2.71955 x 1077 | 1.24108 x 10~7 | 7.29989 x 10— 10
0.2 9.64955 x 10~* | 2.70053 x 10=5 | 2.00455 x 10=7 | 3.9988 x 10~ 10
0.3 6.75748 x 1073 | 7.2157 x 10~ | 7.28962 x 10~ | 4.50094 x 10~ 10
0.4 1.27224 x 1072 | 1.07862 x 107° | 2.67932 x 10~7 | 1.05798 x 1079
0.5 1.29088 x 10~2 | 6.40166 x 10~° | 1.47392 x 10=7 | 2.27621 x 10~ 10
0.6 6.05834 x 10~3 | 5.57487 x 105 | 2.89113 x 10~ 7 | 9.60188 x 10~ 10
0.7 5.56389 x 10~3 | 1.56428 x 10~1 | 3.7217 x 10~7 | 5.04738 x 10~ 11
0.8 1.61871 x 1072 | 1.24564 x 10~% | 1.17941 x 107 | 4.33895 x 10~ 10
0.9 1.7427 x 1072 | 2.72464 x 107° | 2.59873 x 10~ 7 | 3.82577 x 10~ 1
1 0 0 0 0
An 6.25 x 1072 | 3.25521 x 10~% | 6.78168 x 10~7 | 7.56884 x 10~ 1°
errors in L2 norm | 2.11753 x 10=2 | 1.50581 x 10~% | 3.55517 x 10~7 | 9.2949 x 10~ 10
CPU Time 0.359 s 0.406s 0.437 s 0.499 s

5 Conclusion

In this article, the satisfier function in the Ritz—Galerkin method for a
parabolic equation with the nonlocal initial condition has been investigated.
Theorems on the uniqueness of product satisfier functions have been proved.
Satisfier functions enable high adaptability to satisfy, boundary, and non-
standard initial conditions. In addition, the use of satisfier function in the
Ritz—Galerkin method has reduced the number of basis functions needed to
find an accurate approximation of the problem. It is indicated that the sat-
isfier function in the special separable case eventuated in an exact solution
of the problem. Obtained results in numerical examples are compared with
the results of other published methods and demonstrated the more efficiency
of the proposed scheme.
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~ Error

7

Figure 4: The graph of the absolute error with n = 5 for Example 3.
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