[1] Aggarwal, S. and Sharma, U. Implementing deviation degree of two closed intervals to decode fully fuzzy multiobjective linear programming problem, J. Intell. Fuzzy Syst. 31(1) (2016), 443–455.
[2] Allahviranloo, T., Lotfi, F.H., Kiasary, M.K., Kiani, N.A. and Alizadeh, L. Solving fully fuzzy linear programming problem by the ranking function, Appl. Math. Sci. 2(1) (2008), 19–32.
[3] Arana‐Jiménez, M. Nondominated solutions in a fully fuzzy linear programming problem, Math. Methods Appl. Sci. 41(17) (2018), 7421–7430.
[4] Arana-Jiménez, M. Fuzzy Pareto solutions in fully fuzzy multiobjective linear programming. In Optimization of complex systems: theory, models, algorithms and applications, Springer International Publishing. (2020) 509–517.
[5] Arana-Jiménez, M. On generating fuzzy Pareto solutions in fully fuzzy multiobjective linear programming via a compromise method, RAIRO Oper. Res. 56(6) (2022), 4035–4045.
[6] Bas, S. A. and Ozkok, B. A. An iterative approach for the solution of fully fuzzy linear fractional programming problems via fuzzy multi-objective optimization, AIMS Math., 9(6) (2024), 15361–15384.
[7] Collette, Y., and Patrick S. Multiobjective optimization: principles and case studies. Springer Science & Business Media, 2013.
[8] Daneshrad, R., and Jafari, D. FFLP problem with symmetric trapezoidal fuzzy numbers, Decision Science Letters, 4(2) (2015), 117–124.
[9] Das, S.K. Modified method for solving fully fuzzy linear programming problem with triangular fuzzy numbers, Int. J. Res. Ind. Eng. 6(4) (2017), 293–311.
[10] Das, S.K., Mandal, T. and Edalatpanah, S.A. A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers, Appl. Intell. 46 (2017), 509–519.
[11] Ebrahimnejad, A. An effective computational attempt for solving fully fuzzy linear programming using MOLP problem, J. Ind. Prod. Eng. 36(2) (2019), 59–69.
[12] Ezzati, R., Khorram, E. and Enayati, R. A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem, Appl. Math. Model. 39(12) (2015), 3183–3193.
[13] Fathy, E. and Hassanien, A. E. Fuzzy harmonic mean technique for solving fully fuzzy multilevel multiobjective linear programming problems, Alex. Eng. J., 61(10) (2022), 8189–8205.
[14] Hamadameen, A.O. and Hassan, N. A compromise solution for the fully fuzzy multiobjective linear programming problems, IEEE Access. 6 (2018), 43696–43711.
[15] Hosseinzadeh, A. and Edalatpanah, S. A new approach for solving fully fuzzy linear programming by using the lexicography method, Adv. Fuzzy Syst. 2016(1) (2016), 1538496.
[16] Khalili, G.F., Nasseri, SH. and Taghi-Nezhad, N.A. A new interactive approach for solving fully fuzzy mixed integer linear programming, Yugosl J. Oper. Res. 30(1) (2020) 71–89.
[17] Khan, I.U., Ahmad, T. and Maan, N. A simplified novel technique for solving fully fuzzy linear programming problems, J. Optim. Theory Appl. 159 (2013), 536–546.
[18] Kumar, A., Kaur, J. and Singh, P. A new method for solving fully fuzzy linear programming problems, Appl. Math. Model. 35(2) (2011), 817– 823.
[19] Lotfi, F.H., Allahviranloo, T., Jondabeh, M.A. and Alizadeh, L. Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. Math. Model. 33(7) (2009), 3151–3156.
[20] Malik, M. and Gupta, S. K. An application of fully intuitionistic fuzzy multi-objective linear fractional programming problem in e-education system, Int. J. of Fuzzy Syst., 24(8) (2022), 3544–3563.
[21] Miettinen, K. Nonlinear multiobjective optimization. Vol. 12. Springer Science & Business Media, 1999.
[22] Nayak, S., and Maharana, S. An efficient fuzzy mathematical approach to solve multi-objective fractional programming problem under fuzzy environment, J. Appl. Math. Comp. (2023), 1–27.
[23] Niksirat, M. A new approach to solve fully fuzzy multi-objective transportation problem, Fuzzy Inform. Eng., 14(4) (2022), 456–467.
[24] Pérez-Cañedo, B., Rosete, A., Verdegay, J.L. and Concepción-Morales, E.R. A fuzzy goal programming approach to fully fuzzy linear regression, In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems Cham: Springer International Publishing. (2020), 677–688.
[25] Pérez‐Cañedo, B., Verdegay, J.L. and Miranda Perez, R. An epsilon‐constraint method for fully fuzzy multiobjective linear programming, Int. J. Intell. Syst. 35(4) (2020), 600–624.
[26] Sharma, U. and Aggarwal, S. Solving fully fuzzy multi-objective linear programming problem using nearest interval approximation of fuzzy number and interval programming Int. J. Fuzzy Syst. 20 (2018), 488–499.
[27] Temelcan, G., Gonce Kocken, H. and Albayrak, I. Finding compromise solutions for fully fuzzy multi-objective linear programming problems by using game theory approach, J. Intell. Fuzzy Syst., 42(1) (2022), 283–293.
[28] Van Hop, N. Solving fully fuzzy multi-objective linear programming problem with fuzzy dominant degrees, J. Intell. Fuzzy Syst. 39(3) (2020), 3577–3595.
[29] Wu, H.C. On interval-valued nonlinear programming problems, J. Math. Anal. Appl. 338(1) (2008), 299–316.
[30] Yang, X.P., Cao, B.Y. and Lin, H.T. Multi-objective fully fuzzy linear programming problems with triangular fuzzy numbers, In 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery FSKD (2014), 171–177.
[31] Zadeh, L.A. Fuzzy sets, Inf. Control, 8(3) (1965), 338–353.
[32] Zimmermann, H-J. Fuzzy set theory and its applications, Springer Science & Business Media, 2011.
Send comment about this article