[1] Abbaszadeh, M. and Dehghan, M. Investigation of heat transport equa-tion at the microscale via interpolating element-free Galerkin method, Eng. Comput. 38(Suppl 4) (2022), 3317–3333.
[2] Al-Juaifri, G.A. and Harfash, A.J. Finite element analysis of nonlinear reaction–diffusion system of Fitzhugh–Nagumo type with Robin boundary conditions, Math. Comput. Simul. 203 (2023), 486–517.
[3] Al-Musawi, G.A. and Harfash, A.J. Finite element analysis of extended Fisher-Kolmogorov equation with Neumann boundary conditions, Appl. Numer. Math. 201 (2024), 41–71.
[4] Baharlouei, S., Mokhtari, R. and Chegini, N. Solving two-dimensional coupled burgers equations via a stable hybridized discontinuous Galerkin method, Iran. J. Num. Anal. Optim. 13(3) (2023), 397–425.
[5] Biazar, J. and Salehi, F. Chebyshev Galerkin method for integro-differential equations of the second kind, Iran. J. Num. Anal. Optim. 6(1) (2016), 31–43.
[6] Castro, MA. , Rodríguez F., Cabrera, J., and Martín, J.A. A compact difference scheme for numerical solutions of second order dual-phase-lagging models of microscale heat transfer, J. Comput. Appl. Math. 291 (2016), 432–440.
[7] Ciarlet, P.G. The finite element method for elliptic problems, SIAM, (2002).
[8] Ciavaldini, J.F. Analyse numerique d’un problème de Stefan à deux phases par une methode d’éléments finis, SIAM J. Num. Anal. 12(3) (1975), 464–487.
[9] Ern, A. and Guermond, J.L. Theory and practice of finite elements, Springer Science & Business Media, 159 (2004)
[10] Haghighi, D., Abbasbandy, S. and Shivanian, E. Applying the meshless fragile points method to solve the two-dimensional linear schrödinger equation on arbitrary domains, Iran. J. Num. Anal. Optim. 13(1) (2023), 1–18.
[11] Harfash, A.J. High accuracy finite difference scheme for three-dimensional microscale heat equation, J. Comput. Appl. Math. 220(1-2) (2008),335–346.
[12] Hashim, M.H. and Harfash, A.J. Finite element analysis of a Keller–Segel model with additional cross-diffusion and logistic source. part I: Space convergence, Comput. Math. with Appl. 89(1) (2021), 44–56.
[13] Hashim, M.H. and Harfash, A.J. Finite element analysis of a Keller-Segel model with additional cross-diffusion and logistic source. part II: Time convergence and numerical simulation, Comput. Math. with Appl. 109(1) (2022), 216–234.
[14] Hashim, M.H. and Harfash, A.J. Finite element analysis of attraction-repulsion chemotaxis system. Part I: Space convergence, Commun. Appl. Math. Comput. 4(3) (2022), 1011–1056.
[15] Hashim, M.H. and Harfash, A.J. Finite element analysis of attraction-repulsion chemotaxis system. Part II: Time convergence, error analysis and numerical results, Commun. Appl. Math. Comput. 4(3) (2022), 1057–1104.
[16] Hassan, S.M. and Harfash, A.J. Finite element analysis of a two-species chemotaxis system with two chemicals, Appl. Num. Math. 182 (2022), 148–175.
[17] Hassan, S.M. and Harfash, A.J. Finite element analysis of the two-competing-species Keller–Segel chemotaxis model, Comput. Math. Model. 33(4) (2022), 443–471.
[18] Hassan, S.M. and Harfash, A.J. Finite element approximation of a Keller–Segel model with additional self-and cross-diffusion terms and a logistic source, Commun. Nonlinear Sci. Num. Simul. 104 (2022), 106063.
[19] Hassan, S.M. and Harfash, A.J. Finite element analysis of chemotaxis-growth model with indirect attractant production and logistic source, Int. J. Comput. Math. 100(4) (2023), 745–774.
[20] Joseph, D.D. and Preziosi, L. Heat waves, Rev. Modern Phys. 61(1) (1989), 41.
[21] Joshi, A.A. and Majumdar, A. Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys. 74(1) (1993), 31–39.
[22] Nikan, O., Avazzadeh, Z., and Tenreiro Machado, J.A. Numerical treat-ment of microscale heat transfer processes arising in thin films of metals, Int. Commun. Heat Mass Transf. 132 (2022), 105892.
[23] Pajand, M.R., Moghaddam, N.G. and Ramezani, M.R. Review of the strain-based formulation for analysis of plane structures part ii: Evalu-ation of the numerical performance, Iran. J. Num. Anal. Optim. 11(2) (2021), 485–511.
[24] Qiu, T.Q. and Tien, C.L. Short-pulse laser heating on metals, Int. J. Heat Mass Transf. 35(3) (1992), 719–726.
[25] Qiu, T.Q. and Tien, C.L. Heat transf. mechanisms during short-pulse laser heating of metals, J. Heat Transf. 115(4) (1993), 835–841.
[26] Tzou, D.Y. Experimental support for the lagging behavior in heat prop-agation, J. Thermophys. Heat Transf. 9(4) (1995), 686–693.
[27] Tzou, D.Y. The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Transf. 38(17) (1995), 3231–3240.
[28] Tzou, D.Y. A unified field approach for heat conduction from macro-to micro-scales, J. Heat Transf. 117(1) (1995), 8–16.
[29] Yeganeh, S., Mokhtari, R. and Fouladi, S. Using a LDG method for solv-ing an inverse source problem of the time-fractional diffusion equation, Iran. J. Num. Anal. Optim. 7(2) (2017), 115–135.
[30] Youssri, Y.H. and Atta, A.G. Modal spectral Tchebyshev Petrov–Galerkin stratagem for the time-fractional nonlinear burgers’ equation, Iran. J. Num. Anal. Optim. 14(1) (2024), 172–199.
[31] Zhang, J. and Zhao, J.J. High accuracy stable numerical solution of 1D microscale heat transport equation, Comm. Num. Methods Eng. 17(11) (2001), 821–832.
[32] Zhang, J. and Zhao, J.J. Iterative solution and finite difference approxi-mations to 3d microscale heat transport equation, Math. Comput. Simul. 57(6) (2001), 387–404.
[33] Zhang, J. and Zhao, J.J. Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation, J. Com-put. Phys. 170(1) (2001), 261–275.
Send comment about this article