[1] Abbasi, Z., Zamani, I., Mehra, A.H.A., Shafieirad, M. and Ibeas, A. Optimal control design of impulsive SQEIAR epidemic models with ap-plication to COVID-19. Chaos Solit. Fractals. 139 (2020) 110054.
[2] El Alami Laaroussi, A. and Rachik, M. On the regional control of a reaction-diffusion system SIR. Bull. Math. Biol. 82 (2020) 1–25.
[3] Aldila, D., Padma, H., Khotimah, K., Desjwiandra, B. and Tasman, H. Analyzing the MERS disease control strategy through an optimal control problem. Int. J. Appl. Math. Comput. Sci. 28(1) (2018) 169–184.
[4] Athans, M. and Falb, P.L. Optimal control: An introduction to the theory and its applications., Dover Publications, 2006.
[5] Brezis, H., Ciarlet, P.G. and Lions, J.L. Analyse fonctionnelle: théorie et applications, vol 91. Dunod, Paris, 1999.
[6] Chinchuluun, A., Pardalos, P.M., Enkhbat, R., and Tseveendori. I, Eds., Optimization and optimal control: Theory and applications, vol. 39, Springer, 2010.
[7] Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Kallies, R., Muth, D., Junglen, S. and Müller, M.A. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet. Infect. Dis. 13 (2013) 745–751.
[8] Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Vuotto, F., Goffard, A., Behillil, S., Enouf, V. and Caro, V. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet 381(9885) (2013) 2265–2272.
[9] Khajji, B., Kada, D., Balatif, O. and Rachik, M. A multi-region discrete time mathematical modelling of the dynamics of Covid-19 virus prop-agation using optimal control. J. Appl. Math. Comput. 64(1-2) (2020) 255–281.
[10] Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S. and Shin, Y. The charac-teristics of Middle Eastern respiratory syndrome coronavirus transmis-sion dynamics in South Korea. Osong Public Health Res. Perspect. 7(1) (2016) 49–55.
[11] Kouidere, A., Khajji, B., El Bhih, A., Balatif, O. and Rachik, M. A mathematical modeling with optimal control strategy of transmission of covid-19 pandemic virus. Commun. Math. Biol. Neurosci., 2020 (2020), Article ID 24.
[12] Laaroussi, A.E.A., Ghazzali, R., Rachik, M. and Benrhila, S. Modeling the spatiotemporal transmission of Ebola disease and optimal control: a regional approach. Int. J. Dynam. Control, 7 (2019) 1110–1124.
[13] Liberzon, D. Calculus of Variations and Optimal Control Theory. A Concise Introduction, Princeton University Press, Princeton, NJ, USA, 2012.
[14] Madubueze, C.E., Dachollom, S. and Onwubuya, I.O. Controlling the spread of covid-19: Optimal control analysis. Comput. Math. Methods Med. (2020) Article ID 6862516.
[15] El Mehdi, M., Said, M., Bouchaib, K., Omar, B. and Mostafa, R. Math-ematical Study Aiming at Adopting an Effective Strategy to Coexist with Coronavirus Pandemic. J. Math. Comput. Sci. 11(1) (2021) 44–60.
[16] Perkins, T.A. and España, G. Optimal control of the COVID-19 pan-demic with non-pharmaceutical interventions. Bull. Math. Biol. 82(9) (2020) 118.
[17] Pontryagin, L.S. Mathematical theory of optimal processes, John Wiley and Sons, London, UK, 1962.
[18] Sari, R.A., Habibah, U. and Widodo, A., Optimal control on model of SARS disease spread with vaccination and treatment. J. Exp. Life Sci. 7(2) (2017) 61–68
[19] Smoller, J. Shock waves and reaction-diffusion equations, Grundlehren der mathematischen Wissenschaften, 258, (GL, volume 258) Springer-Verlag, New York, 1994.
[20] Stengel, R.F, Optimal control and estimation, Dover, New York, NY, USA, 1994.
[21] Tahir, M., IS, A.S., Zaman, G. and Khan, T. Prevention strategies for mathematical model MERS-Corona virus with stability analysis and op-timal control. J. Nanosci. Nanotechnol. Appl. 1(1) (2019) 1.
[22] Vrabie, I.I. C0-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, Volume 191 (2003) 1–373.
[23] Yang, C. and Wang, J. A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng. 17(3) (2020) 2708–2724.
[24] Zine, H., Adraoui, A.E. and Torres, D.F. Mathematical analysis, fore-casting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model. AIMS Mathematics 7(9) (2022) 16519–16535.
Send comment about this article