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Abstract

Mathematical ecology and mathematical epidemiology are major fields
in both biology and applied mathematics. In the present paper, a four-
dimensional eco-epidemiological model with infection in both prey and preda-
tor populations is studied. It consists of susceptible prey, infected prey, sus-
ceptible predator, and infected predator. The functional response is assumed
to be of Lotka—Volterra type. The behavior of the system such as the ex-
istence, boundedness, and stability for solutions and equilibria are studied
and also the basic reproduction number for the proposed model is computed.
Moreover, a related control model and optimal treatment for the control
model are presented. Finally, to verify the analytical discussion, a numerical
simulation is carried out.
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1 Introduction

Health is the most important topic in the world for human, animal, plant, and
any animate entity. Anybody gets involved with many various viruses such
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as Black Death (1300), Spanish Flu (1918), HIV/AIDS (1920), Swine Flu
(2009), Ebola virus (2013), Zika virus (2016), Corona viruses such as: SARS-
Cov(2003), MERS-Cov(2012), COVID-19 (2019), and so on, which are the
most deadly and disastrous viruses in 20th and 21st centuries. Some of them
are not only epidemic but also are pandemic (that is a world epidemic).
Black Death is just the most famous epidemic historically. The history of
epidemic is an ever fascinating area. Hence nowadays, the study of diseases
and their transmission is most studied subject. Therefore, physicians have
to apply mathematician knowledge to protect man against infected diseases
transmitted by viruses. It is clear that ecology, biology, and epidemiology are
major areas. Therefore, many researchers join together to work on common
topics and interdisciplinary subjects. The above sentences motivate mathe-
maticians, physicians, researchers, and scientists to join together in the said
areas such as dynamics of infectious disease by the help of theory of modeling,
dynamical systems, and so on.

Infectious diseases may be a major factor in human population size. One
of them is Black Death in the 14th century, which killed up to one-fourth of
the people (which occurred in Eurasia); see [6]. Diseases of European people
such as smallpox that were carried out by Cortez and coworkers to Mexico,
decimated native population there in the 16th century. Rinderpest caused
high mortality in wild animals in Africa at the end of the 19th century.

It is obvious that describing any type of ecological phenomena such as
predator-prey, coexistence, populations reactions, and the like entails having
sufficient mathematical knowledge. Mathematical models may be applied
as an effective tool to analyze such realistic phenomena. In the complex
ecosystem some reactions such as coexistence, competition, food chain, food
web, and predator-prey relationships may be important in regulating numbers
of population of species. Whenever a bounty was placed on natural predators
in the Kaibab Plateau in Arizona, the number of deer population went up for
food supply, and then over half of the deer died in 1923-25; see [6]. Regarding
to new researches, we may see an increase in a number of works that describe
the relationships between demographic process among different populations
and disease. Mathematical biologists indeed have been working on merging
ecology and epidemiology (see [2, 7, 8, 5, 10, 12, 14, 15, 16]).

This research work describes a predator and prey type by using biological
and mathematical modeling. This model consists of two species: prey species
and the predator species. Any species has two subclasses: susceptible and
infected.

The original parts of the paper are constructed as follows: Section 2
consists the mathematical modeling; indeed a model is formulated. Section
3 involves stability analysis consisting boundedness, equilibria, stability, and
the basic reproduction number Ry for model (2). In section 4, we analyze
a control model having infection. Also an optimal treatment approach is
studied. Indeed, this section consists making control model for system (2),
applying the control functions for system (3) and its analysis, and establishing
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an optimal control to minimize the number of infected species. In section 5, to
verify the analytical discussion, numerical simulations are computed. Finally,
in the last section conclusion is presented.

2 Mathematical modeling

In this section, a predator-prey system having infection is described and then
its mathematical model is presented; see [1]. First assume that S(T), I(T),
X(T), and Y(T) describe the densities of susceptible prey, infected prey,
susceptible predator, and infected predator at time T, respectively. In the
second step, some basic hypotheses which have been made in the formulating
of model, are presented as follows:

Hy) The prey species grow logistically having intrinsic growth rate v and
carrying capacity K (which is positive) in the case when there is no diseases
and predator species.

Hs) Just susceptible prey may reproduce.

Hs) Prey species can be infected never recovers, which will either die or be
removed in predation interacting. The infected prey species have a disease
induced death.

H,) Infected predators species can catch a healthy predator. Meanwhile,
infected prey may be available for predation by predators.

Hs) By considering a direct contact with infected predator, disease may be
spread.

Hjg) Finally, consider predator species die naturally, but infected species have
a disease induce excess death rate also.

These mentioned considerations motivate one to the following system:
s S+1
— = 1——)— 1 —b8X
dT ’)/S ( K ) (11S b1S y
dr
dr
ax
dr
ay
ar

= ST —dil — fLIX —m 1Y,

clSX + gllX — €1XY — 51X,

:61XY—(51 +(,¥1)Y+7L1[K (].)

with the following initial values S(0) = SpI(0) = Iy, X (0) = Xy, Y (0) = Yp.
‘We moreover make an obvious assumption that all the parameters are
positive. Indeed, the parameters are described as follows:

i) a1 and by are infection rates for prey population and predation rate of
susceptible prey by healthy predators.

11) dyis an infected prey species disease induced death.
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111) f1 and my describe predation rate of infected prey by susceptible and
infected predators, respectively.

iv) ¢ and g1 describe conversion rates for healthy and infected preys to
healthy predator, respectively.

v) 1 describes the natural death rate for the predator population having a
disease induced death rate ag.

vi) eq and n; denote infection rates for predator population and conversion
rate for infected prey to infected predator.

By using the following scaling

s = %,z’ = %, T = %, y= %, and t = T, after some simplification, system
(1) reads as follows:

d

d—i=s(1—s—i)—asi—bsx,

di

d—;:asi—di—fxi—miy,

d—x—csx+ iz —exy — 0x

dt_ g y 9

d

d—‘:{ = exy — ay + niy. (2)

In the above system, we have
a1 K b: b K c= K d — d; e = er K f — flK

a = N ~ v K> N ~
K

g=2K = m1K’ TL:an, o = 51+0117 § =9
Y Y Y i Y

We are now going to study the solutions boundedness for system (2). For
system (2), any solution that starts in R%, remains in this area.

As regarding any parameters nonnegative, one is able to see that the
right-side of model (2) can be a smooth function at (s,4,x,y) in the first
octant,

Q={(s,i,2,y)[s 20,i > 0,2 >0,y > 0}.

Also € is an invariant set.

Since system (2) is homogeneous, we have s = 0,7 = 0,2 =0, and y = 0 is
the trivial solution. The uniqueness and existence theorem ensures that any
trajectory starting from the first quadrant remains in it, that is, no trajectory
will cross the coordinate planes.

3 Stability analysis

In the present section, the solution behavior such as boundedness and sta-
bility for equilibria, is studied. Then, the basic reproduction number for the
said model is computed.
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3.1 Equilibria Stability

Theorem 1. [1] Any solution for system (2) is uniformly bounded.

In the present section, first the equilibrium points and also the basic
reproduction number Ry are computed for system (2). Then the stability
analysis for these equilibria will be presented. Now, we are going to find out
equilibria for system (2) as follows:

a) Ey(0,0,0,0), which is known as the trivial equilibrium.

b) E1(1,0,0,0), which is known as the axial equilibrium.

¢) FE2(s2,0,22,0), which is known as the disease-free equilibria. In the
truth of the following conditions, this equilibrium exists: ¢ > §, sy = g, and
Ty = G 9 Moreover, this condition ¢ > ¢ indicates that ¢; > ‘;é, that is,
a disease-free equilibrium exists provided that predator is a high capacity
consumer.

d) E3(ss,13,0,0), which is known as the predator-free equilibria;

In the truth of the following conditions, this equilibrium exists a > d, s3 =
= a(l +a) Furthermore, this condition a > d implies a1 K > di, that is,
it indicates that the predator-free equilibrium exists provided that a disease
induced death rate is low enough.

d

, 13

e) E4(s4,14,24,0), which is known as the infected-predator-free equilibria.
This exists when sy4,14, 24 are given by

_ g(bd+ 1)~ 8(f +af)
glab+f) —c(f +af)’
- 6(ab+ f) —c(bd + f)
glab+ f) —c(f +af)’
_ag(bd+ f) —gd(ab+ f) + (f +af)(cd — ad)
a gf(ab+ f) —cf(f+af) '
f) Es5(ss5,0,x5,ys5), which is known as the infected-prey-free equilibria.

In the case of e > ba and ce > beca + e, this equilibrium exists, where
S5, T5,Ys are given as

e — ba

S5 = )
e

a
T5 = —,

e

ce — bea — ed
Ys = —— 5 -

e2

g) E*(s*,i*, 2%, y*), which is known as the interior equilibrium point; it
exists provided that
(i) | P2| = max{|(1 + a) Py + bP|, | (ctec=lDitbels |y
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(ii) Py, Py, and P5 are of the same sign,

where Py, P, and Pj are given by

Py = e(aba + fa + cm + de) — (bema + med + ae?),
Py = e(abn + fn + (1 + a)em) — (bemn + a(1 + a)e* + meg),
P; = (aen +mnd + (1 4+ a)ema) — emn + den + (1 4 a)aea + mga).

If the above conditions are true, then the values of s*,i*, x*, y* may be found
by

¢ — PQ—(1+G)P1 —bP3

Py
. P
i B
* P3
T B
= (g—c—ac)P1+ (c— )Py — bePs

BPQ

Now we are able to analyze the stability of the above equilibrium points
for system (2). Indeed, some conditions are presented which show the points
Ey, FEs, B3, Ey, F5 and E* are locally asymptotically stable.

Theorem 2. [1] The following statements are true for system (2).
(a) The trivial equilibrium FEj is unstable.

(b) If d > a and ¢ > ¢, then the equilibrium F; is locally asymptotically
stable.

(c) If ed+beca > ec, A1 > 0, A3 > 0, and A; Ay > As, then the equilibrium
FE5 is locally asymptotically stable.

(d) If n(a — d) < aa(1 + a)andg(a — d) + (ed — ad)(1 + a) < 0, then the
equilibrium Fs is locally asymptotically stable.

(e) If ¢ < §,By > 0,Bs >0, and By By — Bs > 0, then the equilibrium E,
is locally asymptotically stable.

(f) If C; > 0,C3 > 0,Cy > 0 and C1C2C3 > C2 4+ C3Cy, then the
equilibrium Fs is locally asymptotically stable.

(g) If D1 > 0,D3 > 0,Dy > 0 and Dy DyD3 > D3 + D?Dy, then the
equilibrium £* is locally asymptotically stable.
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3.2 The basic reproduction number

The next generation matrix method [3] is used to calculate the basic re-
production number Ry; see [9]. Clearly, ¢ and y are the relevant classes of
infection. The classes i(¢), y(¢) from our model are

di
d—z = ast — di — fxi — miy,

dy + g
— = exy — ay + niy.
at Y Y Y

To define the basic reproduction number, denote the vectors ¢ and v and
the inflow and outflow from the disease compartment i and y as follows:

(1) ast
Y= w2 ) \exy+mniy )’
Lo () = di + faxi+ myi
S\ ) ay '

We compute the 2 x 2 Jacobian matrices, evaluated at the disease- free
equilibrium point Fs(s2,0,x2,0),

F = (42 (52,0.22,0))

and

V= (gz; (52,0,.772,0))

Therefore, two matrices F' and V corresponding to the gain and loss
components of system (2) are defined as

as 0 ass 0
F= . =
ny ex + ni s 0 exq
2

V= <d+fx+mymi> _ <d+fx2 0>.
|Ey

and
0 « 0 «

Now, the next generation matrix is defined as

0 €T
[e3%

_ asp 0
G=FV~'=|dt[m ,

exod + exo? f + asoq) At ergasy 0

)\2 o (
ald+ fza) a(d+ fza)
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The basic reproduction number indeed may be dominant eigenvalue for the
next generation matrix. Thus,

R — 1(((3.772(1 +exaf + asoar) N (vas2)? + (ex2)?(d + fxq)? 4 ©®2as)
072 a(d+ fzs) a?(d+ fxs)? a(d+ fra)”
where
1) c—90
S22 = —, T2 =
c be

If Ry > 1, then the disease is endemic. If Ry < 1, then the disease-free
equilibrium is locally asymptotically stable.

4 Control model and optimal treatment

In this section, first we make a control model for system (2) and then analyze
the application of control for system (3). After it we describe an optimal
control approach.

By this mean, we add the control functions uw; and us as follows:
(i) uy is denoted as the control factor for the first and second species (prey
and infected prey species).
(ii) ug is denoted as the control factor for the third and fourth species (preda-
tor and infected predator species).
The role of control functions is to treat the infected prey and predator species.
Hence, the control system can be written as follows:

d

d;; =s(1—s—1i)—a(l —w)si — bsz,

di ) . . .

== a(l —wuy)si — di — fxi — miy,

d

d—f = csz + giz — e(l — ug)xy — dx,

d .

d—z; = e(l — ug)zy — ay + niy, (3)

where 0 < wu; < 1,7 = 1,2. When u; = 0, no treatment occurs and when-
ever u; = 1, the model shows the full treatment. To investigate the model,
among all of equilibrium points, we analyze the interior equilibrium, that is,
E*(s*,1*,x*,y*) for system (3). It is easy to show that E* exists, if

(i) [Po| = max{|(1 + a(l — u1)) Py + bPy|, |(cFelmr)eg) PutbePs )

c—90

(ii) P1, P2, and Ps are of the same sign, where Pj, Py, and Ps are given
by
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Py =e(1 —ug)(a(l —uq)ba + fa+ ecm + de(1l — uz))
— (bema + me(1 — up)d 4+ a(l — uy)e? (1 — ug)?),

Py =e(1l —ug)(a(l —u)bn+ fn+ (14 a(l —ui)em)
— (bemmn + a(1 — u1)(1 4 a(l — uy))e?(1 — uz)* + me(l — ug)g),

Py =(a(l —uy)e(1 —ug)n +mnd + (1 4+ a(l — uy))ema) — emn + de(1 — us)
+ (1 +a(l —u))a(l —uy)e(l —ug)a + mga).

When the above equalities are satisfied, the values of s*,i* z*, y* are as
follows:

s* = P2_(1+a(1—’u1))P1 —_Pgb

P ’
IO '
i B
. D3
=5
. (g—c—a(l—up)e)Pr+ (c—06)Py —bePs
y B 6(1—UQ)P2 '

Theorem 3. The nontrivial equilibrium point E* is locally asymptotically
stable for model (3) provided D} > 0,D% > 0,Dj > 0 and D{D,D} >
D4* + D}’ D).

Proof. At the interior equilibrium E*, the Jacobian matrix J(E*) can be
obtained as follows:

—s* —(1+a(l—uq))s*  —bs* 0
w | a(l —uq)t* 0 —fa* —mi*
JE") = cx* ga* 0 —e(l — ug)z*
0 ny* e(l — ug)y* 0

The corresponding characteristic equation is given by

M 4+ DX} + DL + DA+ D)y =0,

where
D} =s*,
Db =e?(1 — ug)?x*y* + fg:Jc"2 +a(l —uy)[a(l —uy) + 1]s%" + mni*y*
+ bes*x*,
Dfy =e*(1 — up)?s* 2 y* + fgs*2*> + mns*i*y* — e(1 — ug)nfay*

sk kK

+me(l —u2)gi*x™y* 4+ a(l — up)bgs™i*z* — cf (a(l —uy) + 1)s™z",

and
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Dy = —e(1 —ug)nfs*z*>y* + [e(1 — uz)my
+a(l —uy)(a(l —uy) +1e(l —uz) — a(l — uy)be(l — uz)n
+ bemn — eme(l — ug)[a(l — uy) + 1)]s*i*z*y*.

Regarding the Routh—Hurwitz criterion, it is easy to see that if

D! >0, i=1,3/4,
Dy (DyDy — DiD}) — D > 0,

then all of the eigenvalues for .J(E*) have negative real parts.
Therefore, if D} > 0, D} > 0,D} > 0 and D} DyD}y > D4* + D;>D}, then
E* is locally asymptotically stable. |

Now, we describe an optimal control approach. As it is well known, the
optimal control problem consists of forcing the solution for a system out of
undesirable set at a given time. We are going to control the population of
infected prey and predators, in an optimal method. And so, we establish an
optimal criterion that consists of the minimizing of total number for infected
species along with the treatment costs. We need to find the control functions
u1,usz, as defined before, such that minimize the objective functional

T
min /O [%(Wlulz—i—Wguf)—i—i(t)+y(t)]dt. @)

The existence of an optimal control for the state system is analyzed by using
the theory developed by Fleming et al. [?]. The boundedness of the solu-
tions was discussed in section 3, which is needed to obtain the existence of
an optimal control. Here, we may state the existence theorem as follows:

Theorem 4. There exist optimal controls u; and wus that minimize the
objective functional (4), if the following conditions are met:

1. The class of all initial conditions with controls u and v such that u
and v are Lebesgue integrable functions on [0,T] with values in the
admissible control set along with each state equation being satisfied is
not empty.

2. The admissible control set is closed and convex.

3. The right-hand side of the state system is continuous, bounded above
by a sum of the bounded control and the state, and it can be written
as a linear function of u; and us with coefficients depending on time
and the state variables.

4. The integrand of the functional is convex on the admissible control set
and is bounded above.
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The classical approach is described in [11], so we can derive the associated
Hamiltonian as:

H =%(W1u12 + Waua®) +i(t) + y(t) + ps(t)(s(L — s — i) — a(l — u1)si — bsz)

+ pi(t)(a(l —uy)si — di — fxi — miy
+ po(t)(csx + gix — e(1 — ug)xy — dx)
+ py () (e(l — ug)zy — ay + niy).

where the functions p,(t), pi(t), p=(t), py(t) are called as the co-state variables.

These variables should satisfy in the following equations:
dps(t) ~ OH pi(t)  O0H dp,(t)  OH dp,(t)  OH

a —  9s’  dt 00 dt o’ dt oy’
or explicitly
dps(t)  OH
dt s
= —(ps(t) — 2sps(t) — ips(t) — aisps(t) + aisurps(t) — baps(t)),
dpi(t) OH

e —(1 — sps(t) — asps(t) + asuips(t) + aspi(t)

— asuip;(t) — dpi(t) — fzp;(t) — mip;(t) + gzps(t) + nyp,(t)),

dp;f t_ —%’ = —(=bsps(t) — fipi(t) + cspa(t) + gip.(t) — eyp.(t)
+ eyuapy (t) — 0pa(t) + eypy (t) — uzeypy(t)),
Polt) O — (1= mipi(0) - eap(t) + cousp (1) + e, 1)
— exuapy(t) — apy(t) + nipy(t)). (5)

For the above system of co-stated variables (5), we consider the following
boundary conditions:

$(0) = 8o, i(0) =1io, x(0) =20, y(0)=1yo.,

and
ps(T) = pi(T) = p2(T) = py(T) = 0.

Differentiating H with respect to u; and uy yields:

% = Wiuy + asi(ps(t) — pi(t)) = Wiug + (asi)ps(t) — (asi)pi(t)) = 0,
%Z = Waus + exi(ps(t) — py(t)) = Waua + (exi)p,(t) — (exi)py(t)) = 0.

Thus, the control factors u; and us can be obtained as follows:
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ast

ws(t) = Jo (=pa(8) + pi(t),
us(t) = %(—pmu) +py(1)).

As regards 0 < uq,us < 1, we have the optimal control laws as

u1*(t) = min{1, max{0, u; }} = min{1, max{0, aWSi(pi(t) —ps(t)}}
1

u2"(t) = min{1, max{0, uz }} = min{1, max{0, %(py(t) —p2(t)}}

5 Discussion and numerical simulation

It is obviously that the numerical simulation is important beside the analyt-
ical findings to verify them. By using MATLAB software, we now present
computer simulation for different solutions of systems (2) and (3). We first
present a computer simulation for equilibrium of system (2). The behavior
of these equilibria are shown in Figures 1-6. By setting the parameters and
initial conditions for system (2), we can construct Tables 1 and 2, which are
referred in Figures 1-6. These values are calculated in MATLAB software.

Now, we are going to illustrate Figures 1-6. First, we take the param-
eters and initial condition for system (2) as Row No. i of Tables 1 and 2.
Then we see that the conditions of Theorem 2 are satisfied and consequently
E1(1,0,0,0) is locally asymptotic stable. This illustration is shown in Figure
la. After it, we consider parameters for system (2) as Row No. i of Table 1
and Row No. i of Table 2, then the conditions of Theorem 2 are satisfied and
consequently F5(0.8,0,0.2,0) is locally asymptotic stable. The behavior of
s,1,x,y with t is depicted in Figure 1b. Then, we take parameters and initial
condition for system (2) as Row No. i7) in Table 1 and Row No. ¢ Table
2, then the conditions of theorem 2 are held, and so F5(0.25,0.5357,0,0) is
locally asymptotic stable. The behavior of s,i,x,y with ¢ is depicted. This
description is plotted in Figure 1c. In the next step, we take parameters and
initial condition for system (2) as Row No. 4v in Table 1 and Row No. i of
Table 2.

Therefore, the conditions of Theorem 2 are satisfied, and so
FE,(0.4884,0.2519,0.1589,0) is locally asymptotic stable. This locally be-
havior is shown in Figure 1d. Then, If we take the parameters and initial
condition for system (2) as Row No. v in Table 1 and Row No. iii of Table
2, then the conditions of Theorem 2 are satisfied and therefore the equilib-
rium point F5(0.75,0,0.25,0.4583) is locally asymptotic stable. This kind
of stability is plotted in Figure le. Finally, we consider parameters as Row
No. wvi in Table 1 and Row No. v of Table 2. Then the equilibrium point
E5(0.75,0,0.25,0.4583) is locally asymptotically stable and s, i, z, y approach
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to (s*,1%,z*,y*) = (0.2568,0.1921,0.1550,0.1713), which are shown in Figure
1f.

Now, we can solve our optimal control problem by the help of an iter-
ative method numerically. We here obtain the optimality system from the
state and adjoin equations. The optimal control problem strategy is obtained
by solving the optimal system, which consists of eight ordinary differential
equations and boundary conditions. By the Runge-Kutta fourth scheme,
we can solve the optimality system; see [4]. Starting with an initial guess
for the adjoin variables, the state equations are solved by a forward Runge—
Kutta fourth scheme in time. Thus, by a backward Runge—Kutta fourth
scheme, those state values are used to solve the adjoin equations because
of the transversally conditions; see [13]. We present the results using the
"bvp4c" and "bvpbc” subroutines in MATLAB software. To control in all in-
fected prey and predator individuals, we use two control factors as treatment.
We consider the treatment for 30 days, because a long treatment in the form
of medication has a potentially harmful side effect and the best time of vacci-
nation is the possible early stage of diseases. We here use a set of parameters
value a,b,c,d,e, f,g,m,n,a,d to determine the numerical simulation of the
optimality system with a sufficiently small time step size. In Figures 2-7, we
plot all population sizes in two systems having control and without control.
The solid line denotes the population of individuals in the system without
control while the dash-dotted line denotes the individuals population in the
system with control. The changes of population is clearly visible for equi-
libriums Fs, E4, and E* in Figures 4, 5, and 7. The population of infected
individuals, i(t) and y(¢) is reducing during the time period, in these cases.
Moreover, the population of the other susceptible individuals, s(¢) and z(t)
is increasing.

The equilibria F; and E5 are not infected, then the control factors have
no important effect on results as we see in Figures 2 and 3. In the other
hand, after applying the control function Ej, s3(t) increases significantly
and i(t) decreases. Figure 3 demonstrates the increase of prey and decrease
of infection in prey population. Also, it reveals less decrease in predator
population. After applying controls, Figure 7 at the E* equilibrium shows
the decrease at infected prey and predator, while increasing the predator
populations.
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(a) Row No. i of Tables 1 and 2 (b) Row No. ii of Table 1 and Row No. i of Table 2
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Figure 1: Stability of system (2) for different parameters and initial conditions.
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Table 1: Parameter values for system (2)

Row
No.Parameter a b c d e f g m | n Q@ )
i 04| 1 {01/05|02]02|015|15]14|0.5]0.2
ii 04| 1 [05/05]02[02]015|1.5[14]05]04
iii 04 1 (01]{01|02|02|015]15|14]08]|04
iv 04 1 ]01{01|02|06| 06 |[15]14] 1 |02
v 041 1 1 101|12|06| 04 |15]14]03]0.2
vi 1912108 {02]02]|02]015|15]|14]03]|0.2

Table 2: Initial conditions for system (2)

Row

No. mitial vawe | $(0) | 2(0) | x(0) | y(0)
i 0.5 | 05 | 0.5 0.5

ii 0.5 | 0.5 | 05 0.2

ii 0.5 | 02| 05 0.2

iv 05 | 02| 05 0.5

o
o™

S
o

Populations
(=]
F-S

e
[N

(=]

-0.2

Figure 2: This plot shows the population of s(t),i(t), z(t),y(t) for equilibrium E; with
control (solid line) and without control (dash-dotted line).
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Figure 3: This plot shows the population of s(t),i(t), z(t),y(t) for equilibrium Es with
control (solid line) and without control (dash-dotted line).
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Figure 4: This plot shows the population of s(t),i(t), z(t),y(t) for equilibrium Es with
control (solid line) and without control (dash-dotted line).
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Populations

Figure 5: This plot shows the population of s(t),i(t), z(t),y(t) for equilibrium E4 with
control (solid line) and without control (dash-dotted line).

Populations

Figure 6: This plot shows the population of s(t),i(t),z(t),y(t) for equilibrium E5 with
control (solid line) and without control (dash-dotted line).
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Populations

Figure 7: This plot shows the population of s(t),i(t),z(t),y(t) for equilibrium E* with
control (solid line) and without control (dash-dotted line).

6 Conclusion

Last century was known for mathematical physics era, but the present century
belongs to biological mathematics, which has achieved considerably advanced
developments in all branches of bioscience, medical, ecology, and so on. In the
present research work, a four-dimensional Eco-epidemiological model having
infection in the present species is studied. In other words, we formulated a
prey-predator model having a disease in both of the populations. For almost
all the models with diseased prey, we considered the predators live only on
the infected preys (as they are weak and more vulnerable), therefore, the
susceptible preys are completely out of danger is an oversimplification. In
our model, we made more realistic assumptions which are as follows:

(i) The susceptible predators are capable of catching both the susceptible
and infected preys, and

(ii) infected predators (being weak with disturbed internal mechanism)
can manage only the infected preys (due to the same reasons).

The model may be used in many ways. Precisely, the behavior of solutions
and equilibria such as existence, boundedness, and stability are investigated.
Meanwhile the basic reproduction number for the proposed model is com-
puted, the related control model and an optimal treatment are carried out.
New controlled model are developed from the numerical simulation of the
optimal system, which represents dynamics in each individual of the commu-
nity. The controls developed in this paper support that the number of the
susceptible and infected individuals decreases and the number of the recov-
ered individuals increases in the optimal system. We also pointed out that
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for certain values of the control rate, there exists its corresponding optimal
solution. The above discussion is verified by the numerical simulation.
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