1. Atkinson, K. and Han, W. Theoretical Numerical Analysis: A Functional Analysis Framework, Texts in Appl. Math. 39 (2005), Springer, New York, second edition, .
2. Avazzadeh, Z., Heydari, M. and Loghmani, G. B. A Comparison Between Solving Two Dimensional Integral Equations by the Traditional Collocation Method and Radial Basis Functions, Appl. Math. Sciences, 5(23) (2011) 1145 - 1152.
3. Babolian, E. and Jafari Shaerlar, A. Two Dimensional Block Pulse Functions and Application to Solve Volterra-Fredholm Integral Equations with Galerkin Method, Int. J. Contemp. Math. Sciences, 6(16) (2011) 763-770.
4. Badr, A. A. Block-by-Block Method for Solving Nonlinear Volterra Fredholm Integral Equation, Math. Problems in Engineering, Article ID 537909, doi:10.1155/2010/537909, (2010) 8 pages.
5. Borzabadi, A. H. and Fard, O. S. A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind, Journal of Comput. and Appl. Math. 232 (2009) 449-454.
6. Brunner, H. On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal. 27(4) (1990) 987-1000.
7. Brunner, H. and Messina, H. Time-stepping methods for Volterra Fredholm integral equations, Rediconti di Mathematica, Serie VII, 23 (2003) 329-342.
8. Chan, R. and Ng, M. K. Conjugate gradient methods for Toeplitz systems, SIAM Review, 38 (1996) 427-482.
9. Cherruault, Y. and Saccomandi, G. Some, New results for convergent of Adomian’s method applied to integral equation, Math. Comput. Modelling, 16(2) (1992) 85-93.
10. Farengo, R., Lee, Y. C. and Guzdar, P. N. An electromagnetic integral equation: application to microtearing modes, Phys. Fluids, 26 (1983) 3515-3523.
11. Guoqiang, H. Asymptotic error expansion for the Nystrom method for a Volterra-Fredholm integral equations, J. Comput. Appl. Math. 59 (1995)49-59.
12. Hacia, L. On approximate solution for integral equations of mixed type, ZAMM Z. Angew. Math. Mech. 76 (1996) 415-416.
13. Han, G. Q. and Wang, R. F. Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations, J. Comput. and Appl. Math, 139 (2002) 49-63.
14. Jerri, A. J. Introduction to Integral Equations with Applications, John Wiley and Sons, INC, (1999).
15. Kauthen, P. J. Continous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56 (1989) 409-424.
16. Kress, R. Linear Integral Equations, Springer-Verlag, New York, (1989).
17. Maleknejad, K. and Hadizadeh, M. A new computational method for Volterra-Fredholm integral equations, J. Comput. Math. Appl. 37(9) (1999)1-8.
18. Nadjafi, J. S., Samadi, O. N. and Tohidi, E. Numerical Solution of Two Dimensional Volterra Integral Equations by Spectral Galerkin Method, Journal of Appl. Math. and Bioinformatics, 1(2) (2011) 159-174.
19. Pachpatte, B. G. On a New Inequality Applicable to Certain Volterra Fredholm Type Sum-difference Equations, Tamsui Oxford Journal of Math ematical Sciences, 26(2) (2010) 173-184.
20. Rajan, D. and Chaudhuri, S. Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003)1102-1117.
21. Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis, Speringer Verlage, New York, (1993).
Send comment about this article