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Abstract

This study delves into the potential polynomial and rational wave solutions
of the Kudryashov–Sinelshchikov equation. This equation has multiple ap-
plications including the modeling of propagation for nonlinear waves in
various physical systems. Through detailed numerical simulations using
the finite element approach, we present a set of accurate solitary and soli-
ton solutions for this equation. To validate the effectiveness of our proposed
method, we utilize a collocation finite element approach based on quintic
B-spline functions. Error norms, including L2 and L∞, are employed to as-
sess the precision of our numerical solutions, ensuring their reliability and
accuracy. Visual representations, such as graphs derived from tabulated
data, offer valuable insights into the dynamic changes of the equation over
time or in response to varying parameters. Furthermore, we compute con-
servation quantities of motion and investigate the stability of our numerical
scheme using Von Neumann theory, providing a comprehensive analysis of
the Kudryashov–Sinelshchikov equation and the robustness of our com-
putational approach. The strong alignment between our analytical and
numerical results underscores the efficacy of our methodology, which can
be extended to tackle more complex nonlinear models with direct relevance
to various fields of science and engineering.

AMS subject classifications (2020): 65N12; 65N30.

Keywords: Quintic B-spline; Finite element method; Error analysis.

1 Introduction

The concept of solitons has long been regarded as a captivating nonlinear
phenomenon that has attracted significant attention from researchers across
various scientific disciplines and technological fields. It can be defined as a
self-reinforcing solitary wave possessing unique properties, such as maintain-
ing its shape and speed during propagation, even when encountering obstacles
or interacting with other waves. These remarkable features stem from the
delicate balance between nonlinear and dispersive effects within the underly-
ing physical system. With these pivotal characteristics, solitons find numer-
ous applications across diverse domains. For instance, in the realm of opti-
cal fibers, solitons demonstrate the ability to propagate over long distances
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without distortion, rendering them ideal for high-capacity data transmission
[19, 6, 27]. Moreover, solitons have found utility in simulating nonlinear
systems, such as the Maccari system [24], and in modeling Rossby waves in
geophysical fluid mechanics within fluid dynamics [39]. Further exploration of
potential applications of solitons can be found in [11] and references therein.

Nonlinear evolution equations (NLEEs) represent a category of mathe-
matical equations capturing the temporal evolution of nonlinear phenomena
spanning diverse scientific domains. These equations exhibit a strong asso-
ciation with solitons, as certain types of NLEEs accurately describe their
behavior. Characterized by nonlinear terms capturing interactions and feed-
back among different variables or quantities, NLEEs have found wide-ranging
applications in physics, biology, chemistry, and engineering. Prominent
among these equations are the Korteweg–de Vries (KdV) equation [18], as
discussed by Johnson [16]; the nonlinear Schrödinger equation, examined
by Rabinowitz [29]; and the sine-Gordon equation, explored by Rubinstein
[32], among others. Governing diverse physical phenomena, such as wa-
ter waves, optical fibers, Bose–Einstein condensates, and magnetic materi-
als, NLEEs hold significant importance. Given their wide-ranging applica-
tions, researchers have actively pursued analytical and numerical solutions
for NLEEs. For instance, Hyder and Barakat [12] employed the improved
Kudryashov method to obtain exact solutions for NLEEs. Additionally,
Bildik and Deniz [4] adapted perturbation iteration techniques to simulate so-
lutions for nonlinear Klein–Gordon equations. Gepreel [8] employed a range
of algebraic methods to tackle the nonlinear (1 + 1) Ito integral differen-
tial equation as well as the (1 + 1) nonlinear Schrödinger equation. Ghan-
bari et al. [9] employed the Lie symmetry method to simulate solutions for
Kawahara–KdV type equations, obtaining exact Jacobi elliptic solutions. In
addition, Pal, Chatterjee, and Saha [28] employed the Darboux transforma-
tion method for simulating the multiple soliton solutions for the general Lax
equation. These are only a few of the models that can be found to simulate
the NLEEs, and others can be found in [5] and references therein.

On the other hand, numerical techniques have been employed to ap-
proximate solutions to such problems. For instance, the finite difference
method has been applied to solve Caputo–Hadamard fractional differential
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equations [10]. The literature abounds with extensive efforts in simulating
soliton solutions for these problems, and further research in this area contin-
ues to flourish. One of the most important forms of these equations is the
Kudryashov–Sinelshchikov equation, first introduced in 2003 by Kudryashov
and Sinelshchikov; see [1]. This equation, belonging to the class of integrable
equations, finds numerous applications in studying various physical phenom-
ena [20]. It is considered a generalization of the well-known KdV equation,
involving the interaction of dispersion and nonlinearity [15]. The study of
the Kudryashov–Sinelshchikov equation has led to the development of vari-
ous analytical and numerical techniques, including the Painlevé test, Hirota
bilinear method [14], and Darboux transformation [35]. This equation has
garnered significant attention from researchers due to its rich mathemati-
cal structure and its ability to model a wide range of phenomena, includ-
ing soliton dynamics, wave interactions, and nonlinear wave phenomena. In
2010, Kudryashov and Sinelshchikov developed a nonlinear partial differential
equation to describe pressure waves in liquid and gas bubble mixtures, con-
sidering liquid viscosity and heat transfer. Researchers continue to explore
the properties and solutions of this equation to deepen our understanding
of nonlinear dynamics and its implications in physics and related fields. For
example, Ryabov [33] discovered a new exact solution for this type of equa-
tion using a modification of the truncated method. Additionally, Ak, Os-
man, and Kara [1] established polynomial and rational wave solutions for the
Kudryashov–Sinelshchikov equation. They validated these findings through
the application of an appropriate numerical technique. Other methods for
solving this equation may include the G/G′ polynomial expansion method
[23] and the fractional novel analytic method [36]. It should be noted that
relatively little work has been done on solving this type of equation in the
literature, which motivated our investigation into an accurate solution for
such a model equation.

One of the recently adopted approaches for addressing analogous issues is
the finite element method. This technique is recognized for its effectiveness
and draws from classical methodologies like the Ritz method [21], Petrov–
Galerkin method [18, 26], and the least squares method to approximate solu-
tions for boundary value problems encountered in the theory of elliptic partial
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differential equations. These methods have been extensively applied in solv-
ing complex engineering problems [40] and physics phenomena [25, 30]. The
finite element method involves partitioning a complex geometry into smaller,
simpler regions known as elements, which are interconnected by nodes. The
governing equations are then solved for each element, and the solutions are
combined to obtain an approximation of the solution for the entire system.
This technique finds widespread use across various domains, including struc-
tural analysis [3], heat transfer [7], fluid dynamics [2], and electromagnetics
[13]. Its versatility and flexibility render it a popular choice for solving com-
plex problems in engineering and science. Moreover, it has been effectively
employed in addressing problems of nonlinear behavior, including the bioheat
model [34], two-sided space-fractional evolution equation [22], Allen–Cahn
type phase-field model [38], and other diverse applications.

In this paper, we are interested in solving the nonlinear Kudryashov–
Sinelshchikov equation in the following form:

Ut + αUUx + βUxxx + γ(UUxx)x + ρUxUxx = 0, (1)

where U(x, t) is a field variable, and it is the unknown that is to be deter-
mined. In addition, α, β, γ, ρ are real parameters, and the subscripts shown
are represented as differentiation concerning time and space respectively. De-
pending on the context of the simulated model, the variable U(x, t) in this
equation can represent different physical quantities of interest. In the field
of fluid dynamics, U(x, t) may describe the velocity, pressure, or free surface
displacement of water waves, allowing researchers to analyze the formation
and evolution of solitary waves and solitons. In plasma physics, U(x, t) can
be interpreted as the electric potential or the density of charged particles,
providing insights into the nonlinear behavior of plasma waves, including
ion-acoustic solitons. Moreover, in the domain of solid mechanics, U(x, t)

may correspond to the displacement or deformation of a solid material under
the influence of nonlinear effects, with implications for the design of ad-
vanced nonlinear mechanical systems and wave-based nondestructive testing.
By investigating the analytical and numerical solutions of the Kudryashov–
Sinelshchikov equation, as presented in this study, researchers can deepen
their understanding of the rich nonlinear phenomena underlying these diverse
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physical applications. The solution to (1) will be discussed using the known
B-spline finite element method. The B-splines, or basis splines, are mathe-
matical functions widely used for approximating complex curves and surfaces.
They are constructed by combining a set of piecewise polynomial functions,
each defined over a small interval. The resulting function is continuous and
smooth, with adjustable levels of curvature or smoothness. B-splines are
crucial in computer-aided design, computer graphics, and computer vision,
where they are used to represent and manipulate complex geometric shapes.

The novelty of the presented work lies within the following points:

1. The Kudryashov–Sinelshchikov equation is investigated in this work.

2. The solution is based on the Petrov–Galerkin finite element technique
accompanied by the quintic B-splines as basis functions.

3. A Crank–Nicolson approach is employed for time and the B-spline for
spatial discretization.

4. A detailed stability analysis using Von-Neumann stability is illustrated
to prove that the scheme is unconditionally stable.

5. Numerical experiments are undertaken to verify that the method yields
precise solutions, offering insights into the dynamics of the novel model.

The paper is organized as follows: Section 2 presents a detailed description
of the proposed technique. In Section 3, the Crank–Nicolson technique is
illustrated to reduce the proposed model (1), whereas Section 4 presents the
initial state of the solution. Section 5 focuses on the stability analysis of
the proposed algorithm. The main results of the collocation technique are
presented in Section 6, and the final and concluding remarks, along with
potential future work, are addressed in Section 7.

2 Petrov–Galerkin finite element technique

In this section, we will illustrate the main steps for solving model (1) using the
Petrov–Galerkin finite element method. We first define model (1); through-
out [a, b] is a finite region with boundary conditions. Next, let a partition of
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[a, b] be a = x0 < x1 < · · · < xN = b by the equally spaced knots xi and
let quintic B-splines with knots at the points xi, 0 < i < N be ϕi(x), where
the set ϕi−2, ϕi−1, ϕi, ϕi+1, ϕi+2, ϕi+3 constitutes a series of splines, serving
as the basis for functions sought within the finite region [a, b]. The solution
approximation UN (x, t) for U(x, t) is defined as follows:

UN (x, t) =

N+2∑
i=−2

ϕi(x)ui(t), (2)

where ui represent time-dependent parameters that can be computed from
boundary conditions,

U(a, t) = U(b, t) = 0, Ux(a, t) = Ux(b, t) = 0. (3)

The intervals [xi, xi+1] are utilized to define finite elements with nodes po-
sitioned at xi and xi+1. Each element [xi, xi+1] is spanned by six splines
(ϕi−2, ϕi−1 , ϕi, ϕi+1, ϕi+2, ϕi+3), which are expressed within a local coordi-
nate system denoted by ζ, defined as hζ = (x − xi) where h = xi+1 − xi

and 0 ≤ ζ ≤ 1. The approximate solution in the quintic B-spline collocation
method can be expressed as a combination of quintic B-spline basis func-
tions for the approximation of the space variables under consideration. The
formulations for all these splines across the element [xi, xi+1] are given by

ϕi−2 = 1− 5ζ + 10ζ2 − 10ζ3 + 5ζ4 − ζ5,

ϕi−1 = 26− 50ζ + 20ζ2 + 20ζ3 − 20ζ4 + 5ζ5,

ϕi = 66− 60ζ2 + 30ζ4 − 10ζ5, (4)

ϕi+1 = 26 + 50ζ + 20ζ2 − 20ζ3 − 20ζ4 + 10ζ5,

ϕi+2 = 1 + 5ζ + 10ζ2 + 10ζ3 + 5ζ4 − 5ζ5,

ϕi+3 = ζ5.

Outside the interval [xi−3, xi+3], the spline ϕi(x) and its fifth derivatives
are zero. When we utilize (4) to formulate equations based on the element
parameters ue

i , these curves serve as “shape” functions for the element. The
UN (x, t) variation across the element [xi−3, xi+3] is provided by
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ue(x, t) =

i+3∑
j=i−2

ϕj(x)ui(t). (5)

The derivatives at the knots and the nodal value of UN (x, t) are repre-
sented in terms of the element parameters as demonstrated below:

Ui = ui−2 + 26ui−1 + 66ui + 26ui+1 + ui+2,

hU
′

i = 5(ui+2 + 10ui+1 − 10ui−1 − ui−2),

h2U
′′

i = 20(ui−2 + 2ui−1 − 6ui + 2ui+1 + ui+2), (6)

h3U
′′′

i = 60(ui+2 − 2ui+1 + 2ui−1 − ui−2),

h4U
′′′′

i = 120(ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2).

The dashes denote differentiation with respect to x. When the Petrov–
Galerkin method is employed in (1) and by utilizing the weight functions
W (x), the outcome is

a∫
b

W (Ut + αUUx + βUxxx + γ(UUxx)x + ρUxUxx) dx = 0. (7)

Now, let us establish the corresponding element matrices. For the contribu-
tion of the standard element [xi, xi+1], we acquire∫

e

W (ue
t + αueux + βue

xxx + γ(ueue
xx)x + ρue

xu
e
xx) dx = 0, (8)

l+3∑
i=l−2

( xl+1∫
xl

ϕkϕidx

)
u̇e
i + β

l+3∑
i=l−2

( xl+1∫
xl

ϕkϕ
′′′

i dx

)
ue
i

+ α

l+3∑
j=l−2

l+3∑
i=l−2

(( xl+1∫
xl

ϕiϕ
′

jϕkdx

)
ue
i

)
ue
j

+ (γ + ρ)

l+3∑
j=l−2

l+3∑
i=l−2

(( xl+1∫
xl

ϕkϕ
′

iϕ
′′

j dx

)
ue
i

)
ue
j

+ ρ

l+3∑
j=l−2

l+3∑
i=l−2

(( xl+1∫
xl

ϕkϕiϕ
′′′

j dx

)
ue
i

)
ue
j = 0. (9)
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The matrix form is constructed as

Aeu̇e + βBeue + αCeueTue + (γ + ρ)ueTDeue + γueTEeue = 0, (10)

where the dot represents differentiation with respect to time t, and

ue = (ul−2, ul−1, ul, ul+1, ul+2, ul+3)
T . (11)

The element matrices are given by

Ae
ij =

xl+1∫
xl

ϕkϕidx, Be
ij =

xl+1∫
xl

ϕkϕ
′′′

i dx, Ce
ij =

xl+1∫
xl

ϕiϕ
′

jϕkdx,

De
ij =

xl+1∫
xl

ϕkϕ
′

iϕ
′′

j dx, Ee
ij =

xl+1∫
xl

ϕkϕiϕ
′′′

j dx, (12)

where i, j, and k range from l − 2 to l + 3 for the element [xl, xl+1]. Conse-
quently, the matrices Ae and Be are of size 6× 6, while Ce, De, and Ee are
of size 6× 6× 6. In our algorithm, instead of Ce, De, and Ee, we employ the
corresponding 6× 6 matrices ce, de, and ee.

Ce
ij =

l+3∑
k=l−2

ceijku
e
k, De

ij =

l+3∑
k=l−2

deijku
e
k, Ee

ij =

l+3∑
k=l−2

eeijku
e
k. (13)

This is contingent on the variables ue
k. The matrices of elements Ae and Be

are algebraically determined from (12), where ue
k is provided by (11). The

equation below is derived by assembling the elements from (10).

Au̇+ (βB + αC + (γ + ρ)D + γE)u = 0, (14)

where the matrices A,B,C,D,E are constructed from the element matrices
Ae, Be, Ce, De, Ee, respectively, in the usual way and

u = (u−2, u−1, u0, . . . , uN+1, uN+2)
T . (15)

In the next section, we will illustrate the Crank–Nicolson approach for
simulating the solution for the main model.
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3 Crank–Nicolson approach

In this section, we will demonstrate the time discretization for the system
given by (14) using the Crank–Nicolson approach. The Crank–Nicolson tech-
nique is a finite difference method utilized for numerically solving partial
differential equations such as the heat equation. Time is centered around
(n + 1

2 )∆t, where ∆t denotes the time step. Subsequently, we employ the
Crank–Nicolson method, in the following form

u =
1

2
(un + un+1), u̇ =

1

∆t
(un+1 − un). (16)

Substituting (16) into (14), we obtain the recurrence relationship

A

∆t
(un+1 − un) +

1

2
(βB + αC + (γ + ρ)D + γE)(un+1 + un) = 0, (17)

and then (
A+

∆t

2
(βB + αC + (γ + ρ)D + γE)

)
un+1

=
(
A− ∆t

2
(βB + αC + (γ + ρ)D + γE)

)
un. (18)

In the system (18), the time indices are denoted by the superscripts n and
n + 1. This system comprises N + 1 linear equations with N + 5 variables.
To ensure a unique solution, an additional four conditions derived from the
boundary conditions must be satisfied. These conditions can be used to
eliminate u−2, u−1, u0, . . . , uN+1, and uN+2 from the recurrence relationships
(18), resulting in an 11-banded (N + 5)× (N + 5) matrix equation.

During each time step, an inner iteration is executed to verify the conver-
gence of the nonlinear term. The following outlines the iteration algorithm:

Initially, u0 is known. The first approximation, u1
1 to u, is computed using

u = u0 as per (16). Subsequently, the second approximation u1
2 is obtained

with u = 1
2 (u

0+u1
1), followed by the third u1

3 with u = 1
2 (u

0+u1
2). Typically,

we find that ten iterations are sufficient to obtain a reasonable approximation
for u1 in this initial stage.

To obtain a first approximation, denoted as un+1
1 , for un+1 in general,

we use u = un + 1
2 (u

n + un−1). Subsequently, a second approximation un+1
2

is obtained with u = 1
2 (u

n + un+1), and so forth. Typically, convergence is
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attained after two or three iterations. The time evolution of un is determined
by a system of the decadiagonal and as a result after the initial vector of the
parameters u0 is obtained, UN (x, t) can be begun.

The initial state for the main model is illustrated in the next section.

4 The initial state

In this section, the initial state for solving system (18) is outlined. We initiate
the time assessment of un+1 by computing the vector u0 from the initial
condition using the recurrence relation (18). Referring to (5), if we rewrite
the global trial functions as follows:

UN (x, 0) =

N+2∑
i=−2

ϕi(x)u
0
i . (19)

The parameters u0
i represent unknowns that need to be determined. To

establish the initial vector u0
i , UN must satisfy the following conditions: At

the knots xj , it agrees with the analytical initial condition; applying (5), it
leads to N + 1 conditions. The solution of matrix equations is then used to
get the start up vector u0,

Mu0 = b, (20)

where

M =



3 30 27

1 18 33 8

1 26 66 26 1

1 26 66 26 1

. . .
. . .

. . .
. . .

. . .

1 26 66 26 1

1 26 66 26 1

8 33 18 1

27 30 3



, (21)

b = (U
′′
(x0), U

′
(x0), U(x0), U(x1), . . . , U(xN ), U

′
(xN ), U

′′
(xN ))T ,

u0 = (u0
−2, u

0
−1, u

0
0, . . . , u

0
N , u0

N+1, u
0
N+2)

T . (22)
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After determining the initial vector u0 as the solution of the undecadiagonal
matrix (18), the system is solved using a Thomas algorithm [37].

5 Stability analysis

In this section, the Kudryashov–Sinelshchikov equation represented by model
(1) is amenable to stability analysis through Fourier transform techniques.
Specifically, one can express the solution of the equation as a Fourier series
expansion and substitute it back into the equation to obtain a system of al-
gebraic equations for the Fourier coefficients [25]. By analyzing the solutions
of these algebraic equations, one can determine the stability properties of the
system in question [41]. We begin by applying the Fourier transform for the
main problem, which results in the following form:

Un
m = zneimkh, (23)

Here, z denotes the growth factor of the error in a typical mode of amplitude
zn, h represents the element size, and k indicates the mode number. By
substituting the Fourier mode given in (23) into the system (18), we obtain
the following equality:(

A+
∆t

2
(βB + αC + (γ + ρ)D + γE)

)
zn+1ei(m+1)kh

=
(
A− ∆t

2
(βB + αC + (γ + ρ)D + γE)

)
zneimkh. (24)

Let a =
(
A+ ∆t

2 (βB +αC + (γ + ρ)D+ γE)
)
and b =

(
A− ∆t

2 (βB +αC +

(γ + ρ)D + γE)
)
. Then (24) took the form

azn+1ei(m+1)kh = bzneimkh, (25)

for more simplicity, we divide both sides by zneimθ, where θ = kh so that
the equation would be

azeiθ = b. (26)

We obtain growth factor as follows:

z =
b

aeiθ
, (27)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1310–1335



Samy, Adel, Hanafy and Ramadan 1322

where eiθ = cos(θ) + isin(θ). As |z| < 1, then the scheme is unconditionally
stable.

6 Computational results

In this section, we present the computational results to validate the the-
oretical findings. The numerical algorithm developed in Section 3 will be
validated through the examination of test problems involving the migration
and interaction of solitons. We utilize the L2 and L∞ error norms to quan-
tify the disparity between the numerical and analytical solutions, thereby
demonstrating the predictive accuracy of the scheme regarding the position
and amplitude of the solution as the simulation progresses. The L2 and L∞

norms of the solution are defined as follows:

L2 = ∥Uexact − Un∥2 = [h

N∑
i=1

|Uexact
i − Un

i |2]
1
2 ,

L∞ = ∥Uexact − Un∥∞ = max
i

|Uexact
i − Un

i |. (28)

The Kudryashov–Sinelshchikov (1) has two conserved quantities, which are
as follows:

C1 =

∫ b

a

u̇dx ≃ h

N∑
i=1

Un
j ,

C2 =

∫ b

a

[
1

(γ + σ)

((
γu+ βσγ+1 − βσγ+1γ−σγ

))]
dx (29)

≃ h

N∑
i=1

[
1

(γ + σ)

((
γun

j + βσγ+1 − βσγ+1γ−σγ
))]

.

First, we give the case of a single solitary wave.

6.1 Single solitary wave

The exact solution to the Kudryashov–Sinelshchikov equation is of the form

U(x, t) = Asech2
[
B
(
x− x0 − ct

)]
, (30)
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and the initial condition can take the following equation:

U(x, 0) = Asech2
[
B
(
x− x0

)]
, (31)

where A = 3βk2µ2

α−γk2µ2 , B = kµ
2 , and c = βk2µ2. The constants are in the

form α = 1.5, β = 1.7, γ = 0.8, σ = 2.4, c = −2.4, k = 1, µ = 0.5. Three
experiments were carried out: the first at ∆t = h = 0.1,the second at ∆t =

h = 0.025, and the third at ∆t = 0.025, h = 0.1. The error norms and
conserved quantities are determined for various h and ∆t values up to time
t = 20.

For the first example, the algorithm is executed within the calculation
range [−100, 100] up to time t = 20 to demonstrate the proper functioning of
our numerical technique. During the simulation calculations, typical values
of ∆t = 0.1 and ∆t = 0.025 are employed, along with h = 0.1 and h = 0.025.
Tables 1 and 2 present the values of the error norms and invariants at various
time levels, enabling us to promptly discern the impact of the number of
grid points on the numerical technique. As observed from the tables, the
two conserved quantities remain nearly constant over time. Moreover, the
computed values of the error norms are determined to be sufficiently small,
with these errors scarcely altering over time.

Table 1: Error norms and conservative quantities single solitary wave at ∆t = h = 0.1

t L2 L∞ C1 C2

5.0 3.52322809e-04 1.114142546e-03 7.84615390357 -12.36234575240
10.0 3.52312669e-04 1.114034293e-03 7.84615401202 -12.36234573439
15.0 3.52288576e-04 1.114034292e-03 7.846154326030 -12.36234568224
20.0 3.52300820e-04 1.114034292e-03 7.84615523469 -12.36234553134

Additionally, Table 3 presents a comparison with earlier methods, specif-
ically method one (finite element method with quintic B-spline, FEMQB-
spline) [1] and method two (finite element method with septic B-spline,
FEMSB-spline) [17] at time t = 20. It can be observed from the table that
the error norms obtained using the current method align well with those ob-
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Table 2: Error norms for the Kudryashov–Sinelshchikov equation’s single solitary wave
when ∆t = h = 0.025

t L2 L∞ C1 C2

5.0 2.3295e-08 4.5041e-10 1.4657e-07 -3.345103498
10.0 1.7861e-08 5.8745e-10 1.1238e-07 -3.34510350
15.0 1.3694e-08 7.6617e-10 8.6166e-08 -3.345103508
20.0 1.0500e-08 9.9928e-10 6.6066e-08 -3.345103511

tained using the earlier methods.

Table 3: Error norms for the Kudryashov–Sinelshchikov equation’s single solitary wave
when ∆t = h = 0.025

Present Method FEMQB-spline [1] FEMSB-spline [17]
t L2 L∞ L2 L∞ L2 L∞

5.0 2.3295e-08 4.5041e-10 3.4853e10-6 1.4600e10-6 3.1100e-06 1.3154e-06
10.0 1.7861e-08 5.8745e-10 5.7917e10-6 2.1598e10-6 5.7796e-06 2.0899e-06
15.0 1.3694e-08 7.6617e-10 1.2314e10-5 5.8342e10-6 1.2013e-05 5.4335e-06
20.0 1.0500e-08 9.9928e-10 2.2657e10-5 1.0635e10-5 2.2673e-05 1.0848e-05

Table 4 demonstrates that the error norms (L2 and L∞) and the two con-
served quantities remain stable and consistent across different time values (t),
which suggests that the numerical method used for solving the Kudryashov–
Sinelshchikov equation’s single solitary wave is reliable and maintains accu-
racy over time.

Figure 1 illustrates the two-dimensional states of the bell-shaped solitary
wave solutions at time t = 30 seconds, along with the distribution of nu-
merical errors at the same time for h = ∆t = 0.1. Figure 2 presents the
three-dimensional states of the bell-shaped solitary wave solutions obtained
from t = 0 to t = 20. Additionally, the contour lines depicting the move-
ment of each individual wave are visible in Figure 2. Figure 3 illustrates how
the wave has changed over time. These visualizations demonstrate that the
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Table 4: Error norms for the Kudryashov–Sinelshchikov equation’s single solitary wave
when ∆t = 0.025, h = 0.1

t L2 L∞ C1 C2

5.0 3.80470850877e-04 12.03154472e-04 7.84615382769 -12.36234576810
10.0 3.80458787872e-04 12.03116325e-04 7.84615382159 -12.36234576911
15.0 3.80358154750e-04 12.0279809e-04 7.84615381376 -12.36234577041
20.0 3.80461773590e-04 12.0312576e-04 7.84615380362 -12.3623457721

method under examination accurately captures the propagation movement
of a single wave while preserving its amplitude and shape.

40 50 60 70 80 90 100

t

0

0.2

0.4

0.6

0.8

1

u(
x,t

)

Figure 1: Behavior of numerical solution for t = 30.
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Figure 2: Space plot of one soliton solution for t ∈ [0, 80].
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Figure 3: Behavior of numerical solution for t ∈ [1, 5].

6.2 Interaction of two solitary waves

The interaction of two solitary waves moving in the same direction is inves-
tigated by utilizing an initial condition obtained from the linear sum of two
well-separated solitary waves with distinct amplitudes. This initial condition
can take the following form

U(x, 0) =

2∑
i=1

Aisech2
[
Bi

(
xi − x0

)]
. (32)

The collision of two solitary waves is analyzed in this problem using the
following exact solution:

U(x, t) =

2∑
i=1

Aisech2
[
Bi

(
xi − x0 − cit

)]
, (33)

where Ai =
3βk2µ2

i

α−γk2µ2
i
, Bi =

kµi

2 , and ci = βk2µ2
i . The constants are in the

form α = 1.5, β = 1.7, γ = 0.8, σ = −2.4, c1 = 0.833, c2 = 0.425, k = 1, µ1 =

0.7, µ2 = 0.5. Two experiments were carried out: the first at ∆t = h = 0.1

and the second at ∆t = h = 0.025.

To validate the proper functioning of our numerical technique, the algo-
rithm is executed within the calculation range [−100, 100] up to time t = 20

in this initial example. The values of the error norms and invariants for var-
ious time levels are presented in Table 5. This allows us to promptly assess
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the impact of the number of grid points on the numerical technique. The
table indicates that the two conserved quantities remained nearly consistent
over time. Moreover, the computed error norm values are determined to be
appropriately small, with these errors hardly ever changing over time. Addi-
tionally, Table 6 compares this method with the older method finite element
method with septic B-spline (FEMSB-spline) [17] at time t = 20. Further-
more, Tables 7 and 8 illustrate how the double solitary wave has evolved
as have changed ∆t = h = 0.025 then ∆t = h = 0.1. It can be observed
from the table that the error norms calculated using the current method are
consistent with those obtained using the older method.
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Figure 4: Behavior of numerical solution at t = 25 seconds.
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Figure 5: Numerical solution for x ∈ [−100, 100] and t ∈ [0, 80].

Figure 4 depicts the two-dimensional states of the bell-shaped solitary
wave solutions at time t = 25 seconds, as well as the numerical error distri-
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Figure 6: Behavior of numerical solution for t ∈ [1, 5].

bution for h = ∆t = 0.1 at time t = 30 seconds. Figure 5 shows that at
time zero, the higher energy single wave lags behind the lower energy second
wave. Depending on their magnitude, both waves flow to the right. More
energy equals faster, according to solitary wave theory. Figure 6 illustrates
how the wave has changed over time. As a result, the larger wave eventually
reaches the smaller one, causing interference. Over time, the wave with the
most energy leaves the second wave with the least energy, and solo waves
finally revert to their initial form.

Table 5: Error norms for the Kudryashov–Sinelshchikov equation’s two solitary waves
when ∆t = h = 0.1

t L2 L∞ C1 C2

5.0 11.49337207e-04 3.63452337e-03 20.7342405464 -11.0358676030
10.0 11.49282935e-04 3.63435175e-03 20.7342406546 -11.0387332828
15.0 11.50661291e-04 3.6387104977e-03 20.7342409686 -11.0458076846
20.0 11.52842423e-04 3.6456078414e-03 20.7342418772 -11.06220804894

7 Conclusion

In this study, we present a detailed and comprehensive investigation of the
numerical solution of the Kudryashov–Sinelshchikov equation using a numer-
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Table 6: Error norms for the Kudryashov–Sinelshchikov equation’s two solitary waves
when ∆t = h = 0.1

Proposed technique FEMSB-spline [17]
t C1 C2 C1 C2

5.0 20.7342405464 -11.0358676030 20.7343904 -24.400625
10.0 20.7342406546 -11.0387332828 20.734406 -24.400625
15.0 20.7342409686 -11.0458076846 20.734405 -24.400625
20.0 20.7342418772 -11.06220804894 20.734415 -24.400624

Table 7: Error norms for the Kudryashov–Sinelshchikov equation’s two solitary waves
when ∆t = h = 0.025

t L2 L∞ C1 C2

5.0 1.7674008765e-05 5.5890123084e-05 7.9329863569e-05 -3.34509034835
10.0 1.76740087654e-05 5.5890123084e-05 7.9329863569e-05 -3.34509034835
15.0 8.5319829343e-06 2.6980499030e-05 3.8304877651e-05 -3.34509716131
20.0 4.1201731071e-06 1.302913136e-05 1.8504767045e-05 -3.34510044952

Table 8: Error norms and conservative quantities single solitary wave at ∆t = h = 0.1

and α = 111.5

t L2 L∞ C1 C2

5.0 4.1151810516e-06 1.301334510e-05 0.091644205 -13.36524688650
10.0 4.1147812099e-06 1.3012080696e-05 0.0916442067 -13.36524688629
15.0 4.1140013153e-06 1.3009614453e-05 0.09164421 -13.36524688568
20.0 4.1149242293e-06 1.301253296e-05 0.091644221 -13.36524688398
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ical collocation approach through simulations to elucidate its behavior. The
Kudryashov–Sinelshchikov equation is a nonlinear partial differential equa-
tion that can model the dynamics of various physical field variables, such as
fluid velocity, wave amplitude, plasma density, or displacement/deformation
in solid mechanics. Through the finite element approach, we meticulously
present a diverse array of accurate solutions for this equation, which has
direct relevance to the study of nonlinear wave propagation phenomena in
these physical systems.

The validation of our method’s effectiveness is substantiated through the
utilization of a collocation finite element approach based on quintic B-spline
functions. Error norms, including L2 and L∞, serve as robust metrics for
evaluating the precision of our numerical solutions, affirming the reliability
of our approach. Valuable insights into the dynamic evolution of the equa-
tion over time and under varying parameters, enriching our understanding
of its behavior, have been presented. Furthermore, our study delves into the
computation of conservation quantities of motion and the investigation of nu-
merical scheme stability using the Von Neumann theory, further bolstering
the credibility of our findings.
Based on these findings, the congruence between our analytical and numerical
results underscores the robustness and efficacy of our approach in comprehen-
sively addressing the Kudryashov–Sinelshchikov equation. These findings not
only contribute to the broader understanding of nonlinear partial differen-
tial equations but also offer promising avenues for future research endeavors,
particularly in extending our techniques to tackle more complex models with
direct physical applications in the areas of fluid dynamics, wave propagation,
plasma physics, and solid mechanics.
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