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Abstract

A class of linear and nonlinear fractional differential equations (FDEs) in
the Caputo sense is considered and studied through two novel techniques
called the Homotopy analysis method (HAM). A reliable approach is pro-
posed for solving fractional order nonlinear ordinary differential equations,
and the Haar wavelet technique (HWT) is a numerical approach for both
integer and noninteger orders. Perturbation techniques are widely applied
to gain analytic approximations of nonlinear equations. However, pertur-
bation methods are essentially based on small physical parameters (called
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perturbation quantity), but unfortunately, many nonlinear problems have
no such kind of small physical parameters at all. HAM overcomes this, and
HWT does not require any parameters. Due to this, we opt for HAM and
HWT to study FDEs. We have drawn a semi-analytical solution in terms
of a series of polynomials and numerical solutions for FDEs. First, we solve
the models by HAM by choosing the preferred control parameter. Second,
HWT is considered. Through this technique, the operational matrix of in-
tegration is used to convert the given FDEs into a set of algebraic equation
systems. Four problems are discussed using both techniques. Obtained
results are expressed in graphs and tables. Results on convergence have
been discussed in terms of theorems.

AMS subject classifications (2020): Primary 26A33; Secondary 34A08, 65H20,

90C30, 65T60.

Keywords: Homotopy analysis method; Haar wavelet; Convergence; Collo-
cation method.

1 Introduction

Many engineering and scientific areas, including mathematical modeling in
chemistry, physics, electrodynamics, and aerodynamics, involve fractional
differential equations (FDEs). For instance, fractional derivatives can be
used to describe nonlinear seismic oscillation, and they can also be used to
solve the flaw in the continuum traffic flow assumption in the fluid-dynamic
traffic model. Recent research has shown that FDEs are helpful tools for
modeling various physical phenomena [29, 34]. This is due to the accurate
representation of physical phenomena requiring the knowledge of both the
present and the past, which can also be accomplished through the appli-
cation of fractional calculus. Additionally, as the model contains memory
terms, fractional derivatives offer an effective tool for explaining memory
and hereditary qualities of different materials and actions [12]. This memory
concept covers the past and how it affects the present and the future. Com-
pared to integer-order, the fractional-order models are much more precise;
this phenomenon has drawn the interest of numerous academicians [27, 17].
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In the literature, we have yet to find an approachable analytical method for
the general form of FDEs. So, we need to switch over to the semi-analytical
or numerical methods.

Consider the general FDE of the following form:

aDαy(t) + bg(y(t)) + cy(t) = f(t) (1)

with initial conditions

y(β1) = α1, y′(β1) = α2,

or boundary conditions

y(β2) = α3, y′(β2) = α4,

where α ∈ R and a, b, c, β1, β2, α1, α2, α3, and α4 are real constants, g(y(t))
is nonlinear term, and f(t) is continuous function, for all t ≥ 0.

A method that yields the analytic solution after some iterations is called a
semi-analytical method. Here, we considered one of the semi-analytic meth-
ods to solve FDEs called the Homotopy analysis method (HAM). The HAM
creates a convergent series solution for nonlinear mathematical models by
using the idea of the Homotopy in the topology. It is possible to use a
Homotopy-Maclaurin series to handle the system’s nonlinearities. In 1992,
HAM was created for the first time in Shanghai Jiaotong University by Liao
Shijun for his Ph.D. thesis [20]. Then, in 1997, it was modified by adding an
auxiliary parameter [19] C0 ( ̸= 0), known as the convergence-control param-
eter [21]. A nonphysical variable called the convergence-control parameter
offers a straightforward approach to confirming and enforcing the convergence
of a solution series. In analytical and semi-analytic techniques to nonlinear
differential equations, it is unusual for the HAM to demonstrate the conver-
gence naturally. First, unlike other series expansion techniques, the HAM
does not rely on either small or large physical factors directly, which al-
lows it to apply to both strongly and weakly nonlinear problems, overcoming
some inherent limitations of the standard perturbation methods. Second, the
HAM unifies the Adomian decomposition method (ADM), the delta expan-
sion method, the Homotopy perturbation method, and the Lyapunov artifi-
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cial small parameter approach [18, 30]. Strong convergence of the solution
over broader geographical and parameter domains is frequently possible due
to the method’s enhanced generality. Third, the HAM offers super flexibility
in the solution’s representation and in the method by which it is expressly
achieved. The basis functions of the intended solution and the related auxil-
iary linear operator of the Homotopy can both be chosen with a significant
deal of freedom. Finally, the HAM offers a straightforward method to guar-
antee the convergence of the solution series, in contrast to the other analytic
approximation methods. The Homotopy analysis approach can be used with
other nonlinear differential equations methods, including spectral methods
[25] and Padé approximants. To enable the linear method to handle non-
linear systems, it may also be supplemented with computational techniques
like the boundary element method. The HAM, in contrast to the discrete
computational approach of Homotopy continuation, is an analytic approxi-
mation method. In contrast, the HAM uses the Homotopy parameter only
theoretically to show that a nonlinear system may be split into an infinite set
of linear systems that are solved analytically. The HAM was created as an
analytical approximation technique for the computer epoch with the inten-
tion of “computing with functions instead of numbers.” Using the HAM in
conjunction with a computer algebra system like Maple or Mathematica, we
can quickly obtain analytic approximations of a higher-order strongly nonlin-
ear problem. BVPh is a Mathematica package based on the HAM that has
been made available online for solving nonlinear boundary-value problems as
a result of the HAM’s recent successes in several disciplines [1].

Solutions for the highly complex mathematical model by semi-analytical
techniques require much time for each iteration, and sometimes even an in-
finite series of terms also cannot be possible to put in the analytical for-
mat. For such models, numerical techniques are better. In this study, we
considered the Haar wavelet technique (HWT) to solve FDEs. When rep-
resenting data or other functions, wavelets are mathematical functions that
meet specific criteria. Since Joseph Fourier realized that sines and cosines
could be superposed to describe other functions in the early 1800s, approxi-
mation utilizing the superposition of functions has been used. In the 1980s
and 1990s, wavelets were created as an alternative to Fourier analysis of
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signals. Jean Morlet, Baroness Ingrid Daubechies, Alex Grossman, Palle
Jorgensen, Yves Meyer, Ronald Coifman, Alfred Haar, and Stephane Mallat
were a few key players in this invention. Yet, the scale at which we exam-
ine the data has a specific significance in wavelet analysis. Different scales
or resolutions of data are processed by wavelet algorithms. Wavelet trans-
forms are extremely helpful for signal analysis, compression, and denoising.
Fourier analysis is impoverished at approximating sharp spikes when inves-
tigating its solutions; however, we can employ approximation functions that
are tidily contained in finite domains appreciations to wavelet analysis. For
estimating data with sharp discontinuities, wavelets work well. Compared to
other methods [14, 13], the wavelet approach gives better outcomes. Numer-
ical methods based on wavelets are effective for solving FDEs [36]. The Haar
wavelets are compactly supported, and orthogonal with multi-resolution anal-
ysis [15]. Here we found several methods on FDEs, for instance, the reduced
differential transform method [35], Sawi transform combined with the homo-
topy perturbation method [9], ADM [2], Legendre wavelet operational matrix
method [3], fractional reduced differential transform method [37], fractional
differential transform method [8] and positive solutions method [4], Adomian
decomposition Shehu transform method [10], homotopy technique [28, 7],
Adomian decomposition general transform method [5].

The paper is arranged as described as follows. Preliminaries of the Haar
wavelets and their operational integration matrix, fractional derivative, and
HAM are covered in Section 2. HAM and HWT have been explained in
Section 3. Convergence analysis of HAM and HWT is drawn in Section
4. The implementation of test problems is in Section 5. The conclusion is
enclosed with concluding remarks in Section 6.

2 Preliminaries

Definition 1 (Haar Wavelet). A wavelet can be expressed as a real valued
function Ψ(t) that satisfies the following conditions [33]:∫ ∞

−∞
Ψ(t)dt = 0 and

∫ ∞

−∞
|Ψ(t)|2dt = 1.
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This means that Ψ(t) is an oscillatory function with zero mean, and the
wavelet function has unit energy. more precisely, wavelets are defined as

Ψa,b(t) =
1√
a
Ψ(

t− b

a
), a ̸= 0, b ∈ R.

Here a and b represent, respectively, the dilation and translation. Consider
an interval [A,B] ⊂ R, which is divided into m equal subintervals, each of
width ∆t = B−A

m . The ith orthogonal set of Haar functions on the interval
[A,B] is defined as

hi(t) =


1, ζ1(i) ≤ t < ζ2(i),

−1, ζ2(i) ≤ t < ζ3(i),

0, otherwise,

(2)

where

ζ1(i) = A+
k − 1

2j
m∆t,

ζ2(i) = A+
k − ( 12 )

2j
m∆t,

ζ3(i) = A+
k

2j
m∆t,

for i = 1, 2, . . . ,m,m = 2J and J is a positive integer, which is called the
maximum level of resolution. Here j and k represent the integer decomposi-
tion of the index i; that is, i = k + 2j − 1, 0 ≤ j < 1, and 1 ≤ k < 2j + 1.

Equation (2) is valid for i ≥ 2, and for i = 1, we have

hi(t) =

 1, for x ∈ [A,B],

0, otherwise.
(3)

The Haar wavelet operational matrix Qα for integration of the general order
α is given by

QαHm(t) = JαHm(t) = [Jαh0(t), J
αh1(t), J

αh2(t), . . . , J
αhm−1(t)],

QαHm(t) = [Qh0(t), Qh1(t), Qh2(t), . . . , Qhm−1(t)], (4)

where
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Qhi(t) =



0 A ≤ t < ζ1(i),

Φ1 ζ1(i) ≤ t < ζ2(i),

Φ2 ζ2(i) ≤ t < ζ3(i),

Φ3 ζ2(i) ≤ t < B,

(5)

in which

Φ1 =
(t− ζ1(i))

α

Γ(α+ 1)
,

Φ2 =
(t− ζ1(i))

α

Γ(α+ 1)
− 2

(t− ζ2(i))
α

Γ(α+ 1)
,

ϕ3 =
(t− ζ1(i))

α

Γ(α+ 1)
− 2

(t− ζ2(i))
α

Γ(α+ 1)
+

(t− ζ3(i))
α

Γ(α+ 1)
.

Equation (5) is valid for i ≥ 1. For i = 0, we have

Qh0(t) =


tα

Γ(α+1) t ∈ [A,B],

0 otherwise.

For instance, if α ∈ R, then we have the following cases:

Case 1: For α = 1, J = 3

Q1Hm(t) =



0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375

0.0625 0.1875 0.3125 0..4375 0.4375 0.3125 0.1875 0.0625

0.0625 0.1875 0.1875 0.0625 0 0 0 0

0 0 0 0 0.0625 0.1875 0.1875 0.0625

0.0625 0.0625 0 0 0 0 0 0

0 0 0.0625 0.0625 0 0 0 0

0 0 0 0 0.0625 0.0625 0 0

0 0 0 0 0 0 0.0625 0.0625


.

Case 2: For α = 2, J = 3

Q
2
Hm(t)
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=



0.00195313 0.0175781 0.0488281 0.0957031 0.158203 0.236328 0.330078 0.439453

0.00195313 0.0175781 0.0488281 0.0957031 0.154297 0.201172 0.232422 0.248047

0.00195313 0.0175781 0.0449219 0.0605469 0.0625 0.0625 0.0625 0.0625

0 0 0 0 0.00195313 0.0175781 0.0449219 0.0605469

0.00195313 0.0136719 0.015625 0.015625 0.015625 0.015625 0.015625 0.015625

0 0 0.00195313 0.0136719 0.015625 0.015625 0.015625 0.015625

0 0 0 0 0.00195313 0.0136719 0.015625 0.015625

0 0 0 0 0 0 0.00195313 0.0136719


.

Case 3: Similarly, we obtain the operational matrix for α = 1.5, J =

3

Q1.5Hm(t)

=



0.0117539 0.0610753 0.131413 0.217686 0.317357 0.428818 0.550933 0.682843

0.0117539 0.0610753 0.131413 0.217686 0.293849 0.306667 0.288107 0.24747

0.0117539 0.0610753 0.107905 0.0955356 0.0662843 0.0545208 0.047633 0.0428933

0 0 0 0 0.0117539 0.0610753 0.107905 0.0955356

0.117539 0.0375674 0.0210165 0.0159352 0.0133974 0.0117908 0.010654 0.00979445

0 0 0.117539 0.0375674 0.0210165 0.0159352 0.0133974 0.0117908

0 0 0 0 0.117539 0.0375674 0.0210165 0.0159352

0 0 0 0 0 0 0.117539 0.0375674


.

In the same way, we can generate the operational matrix of Haar wavelets
for different values of α as per our requirements.

Definition 2. [32] A real function f(x), for all x > 0, is said to be in the
space Cµ, µ ∈ R, if there exists a real number p > µ, such that f(x) =

xpf1(x), where f1(x) ∈ C[0,∞) and it is said to be in the space Cn
µ if and

only if f (n)(x) ∈ Cµ, n ∈ N.

Definition 3. [32] The fractional derivative of f(x) in the Caputo sense is
defined as

Dαf(x) = In−αDnf(x) =
1

Γ(n− α)

∫ x

0

(x− t)x−α−1fn(t)dt, (6)

for n− 1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn
−1.

Definition 4. The fractional integration of xn in the Caputo sense is given
by

Iαxn =
xn+αΓ(1 + n)

Γ(1 + n+ α)
, (7)

for n− 1 < α ≤ n, n ∈ N, x > 0.
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3 Method of solution

3.1 Homotopy analysis method

Consider the nonlinear FDEs with different physical conditions,

N [y(t)] = 0, t ≥ 0, (8)

where N represents the nonlinear differential operator, and y(t) is the func-
tion to be determined.

Zeroth order deformation equation:
Let y0(t) be the initial approximation to the actual solution of (8). Liao
constructed zeroth deformation equations taking the auxiliary function H (t)

(̸= 0) and auxiliary parameter h̄ ( ̸= 0) as [16],

(1− q)L [ϕ(t; q)− y0(t)] = qh̄H (t)N [ϕ(t; q)], (9)

where, ϕ(t; q) is a unknown function and L is a Linear operator.

When q = 0, (9) becomes, ϕ(t; 0) = y0 (t) and at q = 1, (9) becomes,
ϕ(t; 1) = y(t). So as the q varies from 0 to 1, the function ϕ(t; q) varies from
initial approximation y0 (t) to the actual solution y(t). Defining the mth
order deformation derivatives,

ym(t) =
1

m!

∂mϕ(t; q)

∂qm
, (10)

expanding ϕ(t; q), and using the Taylor series with respect to q, we get

ϕ(t; q) = y0(t) +

∞∑
m=1

ym(t)qm. (11)

As we know at q = 1 ϕ(t; q) becomes the required solution, (11) at q = 1

becomes
ϕ(t; 1) = y(t) = y0(t) +

∞∑
m=1

ym(t). (12)

Similarly, mth order deformation equation is given by

L [ym(t)− χmym−1(t)] = h̄H (t)Rm(ym−1(t)), (13)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1069–1105
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where

χm =

 0 if m ≤ 1,

1 otherwise,
(14)

Rm(ym−1(t)) =
1

(m− 1)!

∂m−1[N [ϕ(t; q)]]

∂qm−1
. (15)

Thus y1(t), y2(t), y3(t), . . . can be obtained from solving (13). The mth order
approximation of y(t) [21, 22, 23] is given by

y(t) =

m∑
m=0

ym(t). (16)

Equation (16) is the semi-analytical solution of (8).
NOTE: The above method is the same for solving fractional order dif-

ferential equations. The inverse of the linear operator will be integration in
a nonfractional order differential equation, whereas, for fractional order, it
will be a fractional integration.

3.2 Haar wavelet method

Consider the general FDEs of the form

aDαy(t) + bg(y(t)) + cy(t) = f(t), (17)

with initial conditions

y(β1) = α1, y′(β1) = α2.

The Haar wavelet approximation is given as

D
′′
y(t) =

m∑
i=1

aiHm(t), (18)

D
′
y(t) = y

′
(0) +

m∑
i=1

aiQ
1Hm(t),

D
′
y(t) = β2 +

m∑
i=1

aiQ
1Hm(t). (19)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1069–1105
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Integrating the above equation with respect to “t” from 0 to t, we get

y(t) = y(0) + β2t+

m∑
i=1

aiQ
2Hm(t),

y(t) = β1 + β2t+

m∑
i=1

aiQ
2Hm(t). (20)

Fractionally differentiate the above equation of order α, we obtain

Dαy(t) = Dα{β1 + β2t}+
m∑
i=1

aiQ
2−αHm(t), (21)

where Q2−αHm(t) is the (2− α)th order operational matrix of integration.

Substituting (18), (20), and (21) in (17), we get

aDα{β1 + β2t}+
m∑
i=1

aiQ
2−αHm(t) + bg(β1 + β2t+

m∑
i=1

aiQ
2Hm(t))

+ c(β1 + β2t+

m∑
i=1

aiQ
2Hm(t)) = f(t). (22)

Collocate this equation by tl = A + (l − 0.5)(B − A)/m, which yields the
following equation:

aDα{β1 + β2tl}+
m∑
i=1

aiQ
2−αHm(tl) + bg(β1 + β2tl +

m∑
i=1

aiQ
2Hm(tl))

+ c(β1 + β2tl +

m∑
i=1

aiQ
2Hm(tl)) = f(tl).

(23)

Solving the system of algebraic system equation (23) by the Newton–Raphson
method gives the unknown coefficient values. Substituting these obtained
unknown values in (20) will provide the wavelet numerical solution of (17).

4 Convergence analysis

Theorem 1. [21] As long as the series y0(t)+
∑∞

m=1 ym(t) converges, where
ym(t) is governed by the higher order deformation equation number the χm

given by (14), it must be the exact solution.
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Theorem 2. [26] Let ϕ0, ϕ1, ϕ2, . . . be the solution components of a given
equation. The series solution

∑∞
k=0 ϕk(t) converges if there exists 0 < γ < 1

such that ||ϕk+1|| ≤ γ∥ϕk∥, for all k ≥ k0 for some k0 ∈ N.

Theorem 3. [26] Assume that the series solution
∑∞

k=0 ϕk(t) is convergent
to the solution y(t). If the truncation series

∑m
k=0 ϕk(t) is used as an approx-

imation to the solution y(t), then the maximum absolute truncation error is
estimated as, ∥y(t)−

∑m
k=0 ϕk(t)∥ ≤ 1

1−γ γ
m+1∥ϕ0(t)∥.

Theorem 4. [6] Suppose that the functions Dα
∗ uk(t) obtained by using Haar

wavelets are the approximation of Dα
∗ u(t). Then we have an exact upper

bound as follows:

∥Dα
∗ u(t)−Dα

∗ uk(t)∥E ≤ M

Γ(m− α).(m− α)

1

[1− 22(α−m)]
1
2

1

km−α
,

where ∥u(t)∥E = (
∫ 1

0
u2(t)dt)

1
2 .

5 Applications

Example 1. Consider the linear fractional model [24],

Dαy(t) + y(t) = f(t), t ≥ 0, and 1 ≤ α ≤ 2, (24)

with the initial conditions

y(k)(0) = 0, k = 0, 1, (25)

where f(t) = te−t. The exact solution is y(t) = − 1
2e

−t (−1− t+ et cos(t)).

Method of implementation: Applying the HAM method to solve (24)
and concerning (9), the zeroth order deformation is given by

(1− q)L [ϕ(t; q)− y0(t)] = qh̄H (t)[Dαϕ(t; q) + ϕ(t; q)− f(t)]. (26)

According to the condition (25), we choose the initial approximation as
y0(t) = t2 and take the linear operator as L = Dα with L(C1 + C2t) = 0,
where C1 and C2 are integral constants with H (t) = 1. Therefore, mth
order deformation is given by

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1069–1105



1081 A semi-analytic and numerical approach to the fractional ...

Dα[ym(t)− χmym−1(t)] = h̄Rm(ym−1(t)), (27)

where

Rm(ym−1(t)) =
1

(m− 1)!

∂m−1[Dαϕ(t; q) + ϕ(t; q)− f(t)]

∂qm−1
, (28)

subject to
ym(0) = 0, y′m(0) = 0. (29)

Applying Iα, the inverse of Dα on either sides of (27), we get

ym(t) = χmym−1(t) + h̄Iα[Rm(ym−1(t))] + C1 + C2t, m ≥ 1,

where C1 and C2 are calculated by using (29).

The HAM series solution upto first seven terms when α = 1.5 with h̄ = −1

is given by

y(t) = 0.306625t2.5 − 0.178204t3.5 − 0.0424592t4 + 0.0607691t4.5 + 0.0172735t5

− 0.0116399t5.5 − 0.00441781t6 + 0.00192798t6.5 + 0.000664872t7

− 0.000284779t7.5 − 0.0000894778t8 + 0.0000471467t8.5 + 0.0000110138t9

− 6.78818× 10−6t9.5 − 1.54989× 10−6t10 + 8.99097× 10−7t10.5

+ 2.42827× 10−7t11 − 1.19467× 10−7t11.5 − 2.23355× 10−8t12

+ 2.2627× 10−8t12.5 + 2.62537× 10−9t13 + 3.25559× 10−10t13.5

− 4.43969× 10−10t14 − 3.57732× 10−11t14.5 − 5.74907× 10−12t15 + · · · .

The HAM series solution upto first seven terms when α = 2 with h̄ = −1 is
given by

y(t) =
t3

6
− t4

12
+

t5

60
− t6

360
+

t7

1680
− t8

10080
+

t9

90720
− t10

907200
+

t11

7983360

− t12

79833600
+

23t13

1037836800
+

t14

10897286400
− 139t15

1307674368000
− · · · .

Also, the above problem was solved through HWT and ND solvers. The
results obtained are explained through the tables and graphs. Figure 1 shows
the geometrical comparison of exact, HAM, and HTM solutions. Figure
2 reflects the graphical presentation of the HAM solution with different α

values. The error analysis of HAM, HWT, and ND solver solutions with the
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exact solution is shown in Figure 3. Numerical values for integer values and
noninteger values of α have been given in Tables 1 and 2, respectively.

Table 1: Comparison between HAM and HWT solutions for different fractional values
of α in Example 1

t
α = 1.2 α = 1.5 α = 1.7

HAM HWT HAM HWT HAM HWT
0.0 0 0 0 0 0 0
0.1 0.002456 0.002359 0.000911 0.000872 0.000457 0.00047
0.2 0.010388 0.010175 0.004826 0.000872 0.002802 0.002739
0.3 0.023282 0.0228757 0.012430 0.012118 0.007889 0.007729
0.4 0.040204 0.039558 0.023801 0.023309 0.016138 0.015862
0.5 0.060161 0.059252 0.038723 0.0380337 0.027696 0.027294
0.6 0.082198 0.081026 0.056803 0.0559103 0.042517 0.041987
0.7 0.105453 0.104031 0.077547 0.076456 0.060412 0.059758
0.8 0.129169 0.127521 0.100408 0.099131 0.081087 0.080318
0.9 0.152700 0.150860 0.124818 0.0123377 0.104172 0.103302

Table 2: Comparison of solutions obtained from ND Solver, HAM, HWT and their
absolute errors (AE) with exact solution for integer order α = 2 of Example 1

t Exact ND Solver HAM HWT ND Solver HAM Error HWT Error
Error

0.0 0 0 0 0 0 0 0
0.1 0.000159 0.000159 0.000159 0.000189 4.72×10−9 4.7×10−9 3.09×10−5

0.2 0.001205 0.001205 0.001205 0.001264 1.61×10−8 1.61×10−8 5.88×10−5

0.3 0.003863 0.003864 0.003864 0.003947 6.12×10−9 6.1×10−9 8.32×10−5

0.4 0.008694 0.008694 0.008694 0.008798 6.28×10−9 6.3×10−9 1.04×10−4

0.5 0.016107 0.016107 0.016107 0.016229 7.26×10−9 7.3×10−9 1.22×10−4

0.6 0.026382 0.026382 0.026382 0.026518 8.18×10−9 8.2×10−9 1.37×10−4

0.7 0.039676 0.039677 0.039676 0.039825 1.30×10−8 1.28×10−8 1.49×10−4

0.8 0.056043 0.056043 0.056043 0.056200 1.54×10−8 1.42×10−8 1.57×10−4

0.9 0.075436 0.075436 0.075436 0.075599 1.70×10−8 1.16×10−8 1.63×10−4
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Figure 1: Comparison of the exact solution with HAM and HWT solutions, for Example
1.
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Figure 2: Graphical interpretation of the HAM solutions at different α values for Ex-
ample 1.
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Figure 3: Graphical interpretation of the error analysis, for Example 1.

Example 2. Consider the nonlinear fractional model [24],

Dαy(t) + y2(t) = f(t), 1 ≤ α ≤ 2, (30)

subject to the conditions

y(0) = 0, y′(0) = 0, (31)

where f(t) = Γ(6)
Γ(6−α) t

5−α − 3Γ(5)
Γ(5−α) t

4−α + 2Γ(4)
Γ(4−α) t

3−α +(t5 − 3t4 + 2t3)
2
. The

exact solution is [24] y(t) = t5 − 3t4 + 2t3.

Method of implementation: Applying HAM method to solve (30) and
concerning (9), the zeroth order deformation is given by

(1− q)L [ϕ(t; q)− y0(t)] = qh̄H (t)[Dαϕ(t; q) + ϕ2(t; q)− f(t)]. (32)

According to the condition (31), choosing the initial approximation y0 (t) =
tα

Γ(α+1) and the linear operator as L = Dα with L (C1 + C2t) = 0, where
C1 and C2 are integral constants with H (t) = 1, therefore, the mth order
deformation is given by
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Dα[ym(t)− χmym−1(t)] = h̄Rm(ym−1(t)), (33)

where

Rm(ym−1(t)) =
1

(m− 1)!

∂m−1[Dαϕ(t; q) + ϕ2(t; q)− f(t)]

∂qm−1
, (34)

subject to
ym(0) = 0, y′m(0) = 0. (35)

Applying Iα, the inverse of Dα on either sides of (33), we get

ym(t) = χmym−1(t) + h̄Iα[Rm(ym−1(t))] + C1 + C2t, m ≥ 1,

where C1 and C2 are calculated by using (35).
The HAM series upto first six terms when α = 1.5 and taking h̄ = −1 is

given by

y(t) = 2t3 − 3t4 − 5.55112× 10−17t4.5 + 1t5 + 1.11022× 10−16t8.5 − 1.66533

× 10−16t9.5 − 1.38778× 10−17t10 − 0.00107409t10.5 + 3.46945× 10−18t11

+ 1.38778× 10−17t11.5 + 0.00410658t12 − 0.00447957t13 − 0.00465867t13.5

+ 0.00114198t14 + 0.010066t14.5 + 0.000170673t15 − 0.00817004t15.5

− 0.000182659t16 + 0.0049056t16.5 + 0.0000458036t17 − 0.00927567t17.5

− 0.000316896t18 + 0.0173363t18.5 + 0.00101742t19 − 0.0193873t19.5

− 0.00135484t20 + 0.0135402t20.5 + 0.00107153t21 − 0.00602444t21.5

− 0.00102235t22 + 0.00165852t22.5 + 0.00169885t23.− 0.000236628t23.5

− 0.00240855t24 − 0.0000267944t24.5 + 0.002328t25 + 0.000048839t25.5 − · · · .

The HAM series upto first six terms when α = 2 and taking h̄ = −1, is given
by

y(t) = 2t3 − 3t4 + t5 − t14

374400
+

79t15

4365900
− 12469t16

232848000
+

19801t17

257297040

− 2940419t18

198486288000
− 6625093t19

43135092000
+

311661149t20

985944960000
− 3268452721t21

9725828112000

+
45173665739t22

203779255680000
− 103894399937t23

1113144184152000
+

455437961213t24

20778691437504000

+
18932926013t25

5081745188520000
− · · · .
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Additionally, the HWT is used to resolve the above problem. Graphs and
tables are used to explain the results that were obtained. The geometrical
comparison of the exact HAM and HTM solutions is shown in Figure 4. The
graphical depiction of the HAM solution with various values of α is shown in
Figure 5. Figure 6 displays the error analysis of the HAM and HWT answers
with the precise solution. Tables 3 and 4 provide numerical values for the
integer and noninteger values of α accordingly, including the results available
in the literature.

Table 3: Comparison between HAM and HWT solutions for different fractional α values
in Example 2

t
α = 1.2 α = 1.5 α = 1.7

HAM HWT HAM HWT HAM HWT
0.0 0 0 0 0 0
0.1 0.001710 0.001799 0.001710 0.001790 0.001710 0.001799
0.2 0.011520 0.011555 0.011520 0.011565 0.011520 0.011511
0.3 0.032129 0.032988 0.032130 0.032153 0.032130 0.032125
0.4 0.061432 0.061457 0.061440 0.061477 0.061440 0.061410
0.5 0.093701 0.093365 0.093750 0.093799 0.093750 0.093702
0.6 0.120744 0.120875 0.120958 0.120921 0.120960 0.120999
0.7 0.132991 0.132822 0.133760 0.133796 0.133770 0.133765
0.8 0.120401 0.120897 0.122840 0.122856 0.122878 0.122825
0.9 0.072946 0.072365 0.080041 0.080035 0.080182 0.080147
1.0 -0.019915 -0.019896 -0.000521 -0.000988 -0.000034 -0.000988
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Table 4: Comparison of solutions obtained from HAM, HOFLMSM, HWT, and their
AE with exact solution for integer order α = 2 of Example 2

t Exact HAM HOFLMSM HWT HAM HOFSMLM HWT
[24] Error Error [24] Error

0 0 0 0 0 0 0 0
0.1 0.001710 0.001710 - 0.002044 0 - 3.34×10−4

0.2 0.011520 0.0115200 0.011517 0.012099 0 3.222×10−6 5.79×10−4

0.3 0.032130 0.032130 - 0.032866 2.1×10−9 - 7.35×10−4

0.4 0.061440 0.061440 0.061411 0.062269 3.66×10−8 2.920×10−5 8.29×10−4

0.5 0.093750 0.093750 - 0.094641 3.268×10−7 - 8.91×10−4

0.6 0.120960 0.120958 0.120920 0.12187 1.991×10−6 3.972×10−5 9.26×10−4

0.7 0.13377 0.133760 - 0.134730 9.592×10−6 - 9.60×10−4

0.8 0.122880 0.122840 0.122845 0.012389 3.979×10−5 3.49×10−5 1.01×10−3

0.9 0.08019 0.080041 - 0.081295 1.494×10−4 - 1.10×10−3

1.0 0 -0.000521 -0.000015 -0.001106 5.212×10−4 1.545×10−5 1.10×10−3
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Figure 4: Comparison of the exact solution with HAM and HWT solutions, for Example
2.
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Figure 6: Graphical interpretation of the error analysis, for Example 2.
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Example 3. Consider the nonlinear fraction model [31],

Dαy(t)− t sinh(y(t))− 1 = 0, 2 ≤ α ≤ 3, (36)

subject to the conditions

y(0) = 0, y(0.25) = 1, y(1) = 0. (37)

Method of implementation: Applying HAM method to solve (36) and
concerning (9), the zeroth order deformation is given by

(1− q)L [ϕ(t; q)− y0(t)] = qh̄H (t)[Dαϕ(t; q)− sinh(ϕ(t; q))− 1]. (38)

According to the condition (37) and choosing the initial approximation
y0(t) = tα

Γ(α+1) , we take the linear operator L= Dα with L (C1 + C2t +

C3t
2) = 0, where C1, C2, and C3 are integral constants with H (t) = 1.

Therefore, the mth order deformation is given by

Dα[ym(t)− χmym−1(t)] = h̄Rm(ym−1(t)), (39)

where

Rm(ym−1(t)) =
1

(m− 1)!

∂m−1[Dαϕ(t; q)− sinh(ϕ(t; q))− 1]

∂qm−1
, (40)

subject to
ym(0) = 0, ym(0.25) = 0, ym(1) = 0. (41)

Applying Iα, the inverse of Dα on either sides of (39), we get

ym(t) = χmym−1(t) + h̄Iα[Rm(ym−1(t))] + C1 + C2t+ C3t
2, m ≥ 1,

where C1, C2, and C3 are calculated by using (41).

The HAM series upto first six terms when α = 2.5 and taking h̄ = −1 is
given by

y(t) = 5.42172t− 5.85394t2 + 0.300901t2.5 + 0.13254t3.5 + 0.00333693t4.5

− 0.0107536t5.5 + 0.00486111t6 + 6.71025× 10−7t6.5 + 0.00133921t7

− 8.70736× 10−6t7.5 + 0.0000293912t8 + 0.0000396298t8.5

− 0.000104465t9 − 0.000025573t9.5 + 0.000110933t10 − 0.000061787t10.5
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+ 0.0000292694t11 − 0.0000240961t11.5 + 9.8944× 10−6t12 − 8.36776

× 10−7t12.5 − 7.54444× 10−7t13 + 2.01592× 10−6t13.5 − 1.14756

× 10−6t14 − 1.27511× 10−7t14.5 + 3.67453× 10−7t15 − 1.41232

× 10−7t15.5 + 1.8676× 10−8t16 − 6.94883× 10−9t16.5 + 1.11916× 10−8t17

+ 1.86632× 10−9t17.5 − 1.1398× 10−8t18 + 7.4029× 10−9t18.5 − 7.60145

× 10−10t19 − 1.21074× 10−9t19.5 + 1.38057× 10−10t20 + 4.59674

× 10−10t20.5 + 2.71044× 10−10t21 − 9.18445× 10−10t21.5 + 7.2516

× 10−10t22 − 2.61436× 10−10t22.5 + 3.73559× 10−11t23 − 4.92754

× 10−13t23.5 + 1.0376× 10−12t24 − 6.09013× 10−13t24.5 + 1.22102× 10−13t25.

The HAM series upto first six terms when α = 3 and taking h = −1 is given
by

y(t) = 5.39493t− 5.62542t2 +
t3

6
+ 0.0642361t4 + 0.00101757t5 − 0.00241502t6

+ 0.000793762t7 + 0.000184995t8 + 5.78057× 10−6t9 − 0.0000101977t10

+ 6.76308× 10−6t11 − 1.72474× 10−6t12 − 3.70131× 10−7t13 + 2.20798

× 10−7t14 + 4.34937× 10−8t15 − 2.3555× 10−8t16 + 7.1741× 10−9t17

− 1.46382× 10−9t18 + 2.83531× 10−10t19 − 5.93013× 10−11t20

+ 2.72701× 10−11t21 − 1.25142× 10−11t22 + 5.48224× 10−12t23

− 2.21553× 10−12t24 + 7.74129× 10−13t25 − 1.78755× 10−13t26

+ 1.97752× 10−14t27 − 1.1748× 10−16t28 + 1.46076× 10−17t29.

The above problem is also solved using the HWT and ND solver. The graphs
and tables provide an explanation of the results. Figure 7 compares ND
solver, HAM, and HTM solutions geometrically. The HAM solution is graph-
ically depicted with various values of α in Figure 8. Figure 9 depicts the error
analysis of the solutions from the HAM, HWT, and ND solvers. Tables 5 and
6 contain numerical values for the fractional and nonfractional values of α,
respectively.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1069–1105



1091 A semi-analytic and numerical approach to the fractional ...

Table 5: Comparison between HAM and HWT solutions for different fractional values
of α in Example 3

t
α = 2.2 α = 2.5 α = 2.7

HAM HWT HAM HWT HAM HWT
0.1 0.4844060642 0.484351 0.4838689878 0.484351 0.4836640338 0.483640
0.2 0.8558871839 0.855887 0.8555770932 0.855887 0.8554919337 0.855491
0.3 1.1166930600 1.116703 1.1170945299 1.117105 1.1171714074 1.117176
0.4 1.2687652290 1.268765 1.2701278494 1.270128 1.2702944408 1.270294
0.5 1.3139530304 1.313949 1.3162987718 1.316293 1.3164440681 1.316442
0.6 1.2540670349 1.254067 1.2571981039 1.257198 1.2572226052 1.257222
0.7 1.0909051719 1.090910 1.0944110459 1.094417 1.0942652940 1.094268
0.8 0.8262733802 0.826273 0.8295325852 0.829533 0.8292490252 0.829249
0.9 0.4620075965 0.461998 0.4641792631 0.464165 0.4638997104 0.463893
1.0 0 0 0 0 0 0

Table 6: Comparison of solutions obtained from HAM, HWT, and their AE with ND
Solver solution for integer order α = 3 of Example 3

t ND Solver HAM HWT HAM Error HWT Error
0.0 0 0 0 0 0
0.1 0.4850443102 0.4834121287 0.483293 1.63×10−3 1.75×10−3

0.2 0.8564165257 0.8554060228 0.855347 1.01×10−3 1.06×10−3

0.3 1.1158509874 1.1172133089 1.117272 1.36×10−3 1.42×10−3

0.4 1.2655112703 1.2702191975 1.270362 4.70×10−3 4.85×10−3

0.5 1.3078943289 1.3159609254 1.316153 8.06×10−3 8.25×10−3

0.6 1.2456730868 1.2561260143 1.256409 1.04×10−2 1.07×10−2

0.7 1.0815016154 1.0925510067 1.093045 1.10×10−2 1.15×10−2

0.8 0.8178293569 0.8272214124 0.828006 9.39×10−3 1.10×10−2

0.9 0.4567647525 0.4622736694 0.463128 5.509×10−3 6.3×10−3

1.0 0 0 0 0 0
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Figure 7: Comparison of the exact solution with HAM and HWT solutions, for Example
3.
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ample 3.
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Figure 9: Graphical interpretation of the error analysis, for Example 3.

Example 4. Consider the nonlinear fractional model,

Dαy(t)− sin(y(t)) = 0, 1 ≤ α ≤ 2, (42)

subject to the conditions

y(0) = π, y′(0) = −2. (43)

Method of implementation: Applying HAM to solve (42) and con-
cerning (9), the zeroth order deformation is given by

(1− q)L [ϕ(t; q)− y0(t)] = qh̄H (t)[Dαϕ(t; q)− sin(ϕ(t; q))]. (44)

According to the condition (43) and choosing initial approximation y0(t) =
π− 2t, we take the linear operator as L = Dα with L (C1+C2t) = 0, where
C1 and C2 are integral constants with H (t) = 1. Therefore, mth order
deformation is given by

Dα[ym(t)− χmym−1(t)] = h̄Rm(ym−1(t)), (45)

where
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Rm(ym−1(t)) =
1

(m− 1)!

∂m−1[Dαϕ(t; q)− sin(ϕ(t; q))]
∂qm−1

(46)

subject to
ym(0) = 0, y′m(0) = 0. (47)

Applying Iα, the inverse of Dα on either sides of (45), we get

ym(t) = χmym−1(t) + h̄Iα[Rm(ym−1(t))] + C1 + C2t, m ≥ 1,

where C1 and C2 are calculated using (47).
The HAM series upto first six terms when α = 2 and taking h = −1 is

given by

y(t) =
1

16986931200
(100t(72(642315− 7616t2) cos(2t) + 52736 cos(6t)

+ 405 cos(8t) + 48(9(5381− 40t2) cos(4t) + 4t(45691− 48t2 + 4293 cos(2t)

+ 50 cos(4t)) sin(2t)))− 5(−3397386240π + 4168250428t

+ 1152t3(−835 + 16t2) + 1660356360 sin(2t) + 66396240 sin(4t)

+ 2073250 sin(6t) + 33885 sin(8t))− 1026 sin(10t)).

Additionally, the above problem was solved using the HWT and ND solver.
Through the use of graphs and tables, outcomes are explained. Exact HAM
and HTM solutions are geometrically compared in Figure 10. Figure 11
shows a graphic representation of the HAM solution with various values for
α. Figure 12 displays the exact solution and error analysis of the HAM,
HWT, and ND solver solutions. In Tables 7 and 8, respectively, numerical
values for integer and noninteger values of α are provided.
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Table 7: Comparison between HAM and HWT solutions for different fractional values
of α in Example 4

t
α = 1.2 α = 1.5 α = 1.7

HAM HWT HAM HWT HAM HWT
0.1 2.946783 2.94657 2.943491 2.94343 2.942547 2.94256
0.2 2.765230 2.76433 2.752249 2.75192 2.747753 2.74762
0.3 2.598414 2.59546 2.570587 2.56965 2.559792 2.55934
0.4 2.446371 2.43943 2.400060 2.39788 2.380531 2.37946
0.5 2.308211 2.29522 2.241409 2.23711 2.211257 2.20912
0.6 2.182297 2.16154 2.094669 2.08729 2.052699 2.04892
0.7 2.066382 2.03708 1.959240 1.94802 1.905048 1.89911
0.8 1.957728 1.92051 1.833943 1.81866 1.767964 1.75956
0.9 1.853242 1.8106 1.7171035 1.69842 1.640616 1.62994
1.0 1.749611 1.70617 1.606626 1.58642 1.521720 1.50973

Table 8: Comparison of solutions obtained from HAM, HWT, and their AE with ND
Solver solution for integer order α = 2 of Example 4

t ND Solver HAM HWT HAM Error HWT Error
0.1 2.941925 2.941925 2.94216 8.8×10−9 2.35×10−4

0.2 2.744233 2.744233 2.74474 1.57×10−8 5.17×10−4

0.3 2.550495 2.550395 2.55114 5.4×10−9 7.44×10−4

0.4 2.362110 2.362110 2.36307 3.5×10−9 9.60×10−4

0.5 2.180831 2.180831 2.18198 4.87×10−8 1.14×10−3

0.6 2.007722 2.007721 2.00903 2.033×10−7 1.30×10−3

0.7 1.843649 1.843648 1.84509 7.507×10−7 1.44×10−3

0.8 1.689183 1.689181 1.69073 2.3361×10−6 1.55×10−3

0.9 1.544628 1.544622 4.54625 5.8886×10−6 1.62×10−3

1.0 1.410054 1.410042 1.41194 1.16915×10−5 1.89×10−3
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Figure 10: Comparison of the exact solution with HAM and HWT solutions, for Example
4.
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Figure 12: Graphical interpretation of the error analysis, for Example 4.

Example 5. Consider the one-dimensional nonlinear homogeneous time frac-
tional Korteweg–de Vries (KdV) equation [11],

Dα
t [v(x, t)] + 6vvx + vxxx = 0, 0 ≤ α ≤ 1, (48)

with the initial condition

v(x, 0) =
1

2
sech2

(x
2

)
. (49)

The exact solution [11] is v(x, t) = 1
2sech

2
(
x+t
2

)
.

Method of implementation: Applying HAM method to solve (48) and
concerning (9), the zeroth order deformation is given by

(1− q)L [ϕ(x, t; q)− v0(x, t)]

= qh̄H (t)[Dα
t ϕ(x, t; q) + 6ϕ(x, t; q)ϕ(x, t; q)x + ϕ(x, t; q)xxx]. (50)

According to the condition (49), choosing the initial approximation v0(x, t) =
1
2sech

2
(
x
2

)
, we take the linear operator L= Dα

t with L (C1) = 0, where C1

is a integral constant with H (t) = 1. Therefore, mth order deformation is
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given by
Dα

t [vm(x, t)− χmvm−1(x, t)] = h̄Rm(vm−1(x, t)), (51)

where

Rm(vm−1(x, t))

=
1

(m− 1)!

∂m−1[Dα
t ϕ(x, t; q) + 6ϕ(x, t; q)ϕ(x, t; q)x + ϕ(x, t; q)xxx]

∂qm−1
,(52)

subject to
vm(x, 0) = 0, (53)

Applying Iαt , the inverse of Dα
t on either sides of (51), we get

vm(x, t) = χmvm−1(xt) + h̄Iαt [Rm(vm−1(x, t))] + C1, m ≥ 1,

where C1 is calculated by using (53).

The HAM series upto first six terms when α = 1 and taking h̄ = −1 is
given by

v(x, t) =
2(

e
−x
2 + e

x
2

)2 +
2ext

(1 + ex)
4 − 2e3xt

(1 + ex)
4 +

4ex (−1 + ex) t

(1 + ex)
3

+
ext2

(1 + ex)
4 − 4e2xt2

(1 + ex)
4 +

e3xt2

(1 + ex)
4 + · · · .

The HAM series upto first six terms when α = 0.4 and taking h = −1 is
given by

y(t) =
2(

e
−x
2 + e

x
2

)2 +
2.25412ext0.4

(1 + ex)
6 +

4.50824e2xt0.4

(1 + ex)
6 − 4.50824e4xt0.4

(1 + ex)
6

− 2.25412e5xt0.4

(1 + ex)
6 +

4.50824ex(ex − 1)t0.4

(1 + ex)
3

+
2.25412ext0.8

(1 + ex)
6 − 4.29469e2xt0.8

(1 + ex)
6 + · · · .

The graphs and tables provide an explanation of the results. Figure 13 com-
pares Exact, HAM, and FRPSM solutions geometrically. The HAM solution
is graphically depicted with various values of α in Figure 14. Figure 15 de-
picts the error analysis of the solutions from the HAM, FRSPM, and Exact.
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Tables 9 and 10 contain numerical values for the fractional and nonfractional
values of α, respectively.

Table 9: Comparison of solutions obtained from exact solutions and HAM and AE of
HAM, FRSM, ADM solutions with exact solution for integer order α = 1 at x = 0 of
Example 5

t Exact HAM HAM FRPSM ADM
Error Error[11] Error[11]

0 0.500000 0.500000 0. - -
0.1 0.498752 0.498752 5.551×10−17 2.900×10−9 2.080×10−6

0.2 0.495033 0.495033 5.551×10−17 1.879×10−7 3.31×10−5

0.3 0.488917 0.488917 1.110×10−16 2.216×10−6 3.054×10−4

0.4 0.480521 0.480521 5.551×10−17 1.184×10−5 2.763×10−4

0.5 0.470007 0.470007 5.551×10−17 4.465×10−5 2.500×10−3

0.6 0.457568 0.457568 2.220×10−16 - -
0.7 0.443426 0.443426 6.106×10−16 - -
0.8 0.427819 0.427819 3.608×10−15 - -
0.9 0.411001 0.411001 7.622×10−14 - -
1.0 0.393224 0.393224 1.171×10−12 - -

Table 10: Comparison between HAM and FRPSM solutions for different fractional values
of α at x = 2 in Example 5

t
α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

HAM FRPSM[11] HAM FRPSM[11] HAM FRPSM[11] HAM FRPSM[11] HAM FRPSM[11]
0 0.209987 - 0.209987 - 0.209987 - 0.209987 - 0.209987 -
0.1 0.354751 0.354750978 0.294966 0.29496648 0.259396 0.259395686 0.238566 0.238566145 0.226368 0.226368188
0.2 0.382232 0.382232355 0.327693 0.327692525 0.288355 0.28835476 0.261508 0.261507702 0.243526 0.243526238
0.3 0.400997 0.400996543 0.353185 0.353185341 0.31353 0.313530228 0.283442 0.283441821 0.261461 0.261461322
0.4 0.415703 0.415702913 0.375006 0.375006055 0.336761 0.336761221 0.30503 0.305029944 0.280173 0.280173439
0.5 0.427989 0.427988593 0.394504 0.394504163 0.35877 0.358769892 0.326536 0.326536438 0.299663 0.299662589
0.6 0.438641 - 0.412363 - 0.379928 - 0.348096 - 0.319929 -
0.7 0.448105 - 0.428985 - 0.400457 - 0.369786 - 0.340972 -
0.8 0.456661 - 0.44463 - 0.420499 - 0.391655 - 0.362792 -
0.9 0.464496 - 0.459478 - 0.440155 - 0.413735 - 0.385390 -
1.0 0.471742 - 0.47366 - 0.459495 - 0.436046 - 0.408764 -
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Example 5.
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Figure 15: Graphical interpretation of the error analysis, for Example 5.

6 Conclusion

In this study, we discussed the linear and nonlinear fractional models of dif-
ferent orders through two different methods: the HAM (Homotopy analysis
method) and the HWT (Haar wavelet technique). Here, we considered five
problems to justify the two different methods. HAM is the semi-analytical
method that yields the analytical solution of a given model after more defor-
mations. The HWT is a numerical technique that solves the models numeri-
cally with the help of the Mathematica software. The obtained solutions were
numerically tabulated in Tables 1–10. Figures 1–14 show the performance
of the methods. Here, HAM consumes more time to yield solutions for the
different models, but HWT yields the numerical results in less time. This
study reveals that HAM provides solutions with high accuracy compared to
HWT. From the tables and figures, we conclude that HAM is better than
HWM, FRPSM [11], and HOFLMSM [24].
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