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Adaptive mesh based Haar wavelet
approximation for a singularly perturbed

integral boundary problem
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Abstract

This research presents a nonuniform Haar wavelet approximation of a
singularly perturbed convection-diffusion problem with an integral bound-
ary. The problem is discretized by approximating the second derivative of
the solution with the help of a nonuniform Haar wavelets basis on an arbi-
trary nonuniform mesh. To resolve the multiscale nature of the problem,
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1141 Adaptive mesh based Haar wavelet approximation for a singularly ...

adaptive mesh is generated using the equidistribution principle. This ap-
proach allows for the dynamical adjustment of the mesh based on the solu-
tion’s behavior without requiring any information about the solution. The
combination of nonuniform wavelet approximation and the use of adaptive
mesh leads to improved accuracy, efficiency, and the ability to handle the
multiscale behavior of the solution. On the adaptive mesh rigorous error
analysis is performed showing that the proposed method is a second-order
parameter uniformly convergent. Numerical stability and computational
efficiency are validated in various tables and plots for numerical results
obtained by the implementation of two test examples.

AMS subject classifications (2020): 34D15, 65L11, 65L20, 65T60, 65L50

Keywords: Singular perturbation problems, Adaptive mesh, Nonuniform
Haar wavelet, Parameter uniform convergence

1 Introduction

Nowadays, singularly perturbed problems are among the most studied classes
of differential equations because of their frequent appearance in various
branches of science and engineering such as fluid mechanics, heat transfer,
and problems in structural mechanics posed over thin domains [35, 31, 30].
These problems are characterized by a small positive parameter ε multiplied
by the highest order derivative term, due to which in certain regions rapid
change is observed in the solution, generally called as boundary layer. Actu-
ally, this multiscale behavior is the main attraction of this class of problems
due to which the traditional numerical methods fail to give satisfactory in-
formation about the solution in this boundary layer region. We find several
techniques in the literature considering various classes of singularly perturbed
problems, for example, [31, 30, 37, 21, 41, 32, 1, 36, 39].

In this paper, one important subclass is addressed: Singularly perturbed
convection-diffusion problems with integral boundary conditions. These
problems appear in many areas such as fluid dynamics, plasma physics,
thermo-elasticity, chemical engineering, underground water flow, oceanog-
raphy, meteorology, water pollution problems, and so on [17]. In generalized
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form, this class is expressed as a differential equation with the perturbation
parameter ε such that 0 < ε≪ 1,

Lεu := εd
2u

dx2 + a(x)dudx = f(x), x ∈ G := (0, 1),

du
dx (0) =

γ0

ε ,

1∫
0

ξ(x)u(x)dx = γ1.

(1)

Here, the function ξ and the constants γ0 and γ1 are known. The existence
of unique solution can be obtained from the sufficient smoothness of the
functions f and ξ and the condition a(x) ≥ α > 0 in G.

Furthermore, the following two remarks provide the stability of the model
problem and derivative bounds of the solution, respectively [11].

Remark 1. Suppose that y(x) is a sufficiently smooth function with both
y(0) and y(1) being nonnegative. Then Lεy(x) ≤ 0, x ∈ G implies that
y(x) > 0, x ∈ Ḡ.

Remark 2. For 0 ≤ r ≤ 2, the solution u(x) to the problem (1) satisfies the
following bounds: ∣∣∣∣drudxr

∣∣∣∣ ≤ C
(
1 + ε−re−

α
ε x
)
. (2)

From these solution bounds, the boundary layer behavior is quite visible
near x = 0. So, in the numerical analysis of these problems, the main focus is
to resolve this boundary layer region. The problem considered in this paper
has been studied previously by some authors such as in [6, 11, 33]. In [6], the
authors presented an exponentially fitted finite difference operator method
with a linear order convergence rate. In [11], authors presented a simpler
nonstandard finite difference operator method with the same linear order
convergence. Recently, in [33], authors presented a second-order nonuniform
Haar wavelet approach on an exponentially graded mesh. Indeed, the nonuni-
form graded mesh used is generated based on the knowledge of the width of
the boundary layer, which is not available all the time in case of multiscale
problems. Therefore, we need an adaptive mesh generation algorithm that
works on a dynamic structure and does not require any information about
the solution. This is the motivation for the present work.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1140–1167



1143 Adaptive mesh based Haar wavelet approximation for a singularly ...

For a long time, we have seen frequent applications of wavelets theory in
various disciplines of science such as in time-frequency analysis, time series
analysis, signal analysis, image and data compression, and so on. However,
these days, we can see one very interesting application of wavelets theory in
the construction of fast numerical algorithms due to their nice capacity for the
representation of complex functions and operators. One such example is the
Haar wavelets with some very nice properties such as theoretical simplicity,
memory efficiency, orthogonality, compact support, and easy and fast imple-
mentation. Still, using the standard Haar wavelet method is not a good idea
in case of problems exhibiting a multiscale nature in their solution. The uni-
form Haar wavelet methods working on the equidistant grid are not computa-
tionally efficient for such problems. Therefore applying the nonuniform Haar
wavelet approach together with the adaptively generated nonuniform mesh is
a nice idea for these problems. For the first time, nonuniform Haar wavelets
were proposed in 2004 by Dubeau, Elmejdani, and Ksantini[12]. More details
of Haar wavelets and their applications can be found in [24, 29, 13, 16].

Generally speaking, the idea of adaptive mesh is the movement of a fixed
number of mesh points so that the regions of rapid variations attain more
mesh points and those of smooth variation attain a comparatively smaller
number of mesh points by some iterative process. In this work, the approxi-
mation of problem (1) is done using a nonuniform Haar wavelet approach on a
non-equidistant adaptive mesh generated with the help of the equidistribution
principle [18]. Starting with a uniform mesh, this technique aims to condense
the maximum number of mesh points inside the layer regions working on a
self-improving mechanism. The main advantage of the equidistribution ap-
proach is that it does not require any a priori information about the solution
for the construction of adaptive mesh. A nonuniform mesh {xi}Ni=0 is defined
as an equidistribution mesh for the monitor function M(x, u(x)) if it satisfies
the equidistribution principle, that is,

xi∫
xi−1

M(s, u(s)) ds =

xi+1∫
xi

M(s, u(s)) ds, 1 ≤ i ≤ N − 1. (3)

So far, this equidistribution mesh idea has been applied to many physical
problems together with finite difference methods, for example, in [34, 28,
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4, 19, 9, 10, 27, 8] and the references therein. However, to the best of the
authors’ knowledge, this idea has never been applied to any problem to-
gether with the wavelet methods. This is the first time the nonuniform Haar
wavelet method is considered together with the solution adaptive equidistri-
bution mesh. On this mesh, the highest order derivative is approximated
by the Haar series and then obtained the other derivatives by integrating
the Haar series. It is favorable to integrate the derivative approximation
because the derivative of the Haar wavelet results in an impulse function.
Finally, this approximation on collocation points gives a 2M × 2M system
of linear equations in wavelet coefficients as variables, which can be solved
using any known method. Via a thorough analysis, the proposed method is
proved to be a second-order parameter uniformly convergent and is validated
by implementing it on two example problems.

The main highlights of this research can be listed as the following bullet
points:

1. A new adaptive mesh-based numerical wavelet method is presented
for singularly perturbed convection-diffusion problems with a nonlocal
boundary.

2. The equidistribution mesh proposed, works on a self-improvement
mechanism and does not require the a priori information about the
solution, in comparison to other a priory adaptive meshes; such as
Shishkin [37] and Bakhvalov meshes [2].

3. The advantage of the proposed method is that it uses the nice proper-
ties of nonuniform Haar wavelets and the adaptive mesh in the same
framework.

4. Simple and effective uniform convergence analysis is presented for the
proposed method.

5. The numerical algorithm is provided for constructing the adaptive mesh
and solution.

The rest of the paper is organized as follows: Sections 2 and 3 briefly
discuss the construction of the numerical method and the adaptive mesh,
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1145 Adaptive mesh based Haar wavelet approximation for a singularly ...

respectively. Error analysis in Section 4 demonstrates the second-order pa-
rameter uniform convergence of the proposed numerical method. Numerical
stability and error results in Section 5 prove the efficient applicability of
the proposed method and validate the theoretically proved results. Finally,
Section 6 concludes the theoretical and numerical findings of the present
research.

Notation: We use C as a generic positive constant, which is independent
of ε and M and can take different values.

2 Wavelet-based numerical method

This section discusses the structure and theoretical aspects of nonuniform
Haar wavelets and then provides a detailed numerical discretization of the
problem with the help of nonuniform Haar wavelets [25].

2.1 Nonuniform Haar wavelet

Basically, Haar wavelets are characterized by a dilation parameter (j) and
a translation parameter (l), where j = 0, . . . , J , and l = 0, . . . ,m − 1, with
m = 2j . Each wavelet is numbered by the index i = m+ l+1. The minimum
values for l and m are 0 and 1, respectively, which results in i = 2. Similarly,
the maximum values of i = 2M , where M = 2J , with J indicating the
maximum level of resolution. Since the indexing here is starting from 2, we
define the first Haar wavelet h1(x) as

h1(x) =

 1, x ∈ [0, 1],

0, otherwise.
(4)

Let {xk}2Mk=1 be an arbitrary nonuniform mesh in [0, 1]. Now taking ν =
M
m , choose three specific nodes on the discrete mesh, σ1(i) = x(2lν), σ2(i) =

x(2lν+ν), σ3(i) = x(2lν+2ν), and using the requisite
∫ 1

0
hi(x)dx = 0, define the

Haar wavelet, for i = 2 ≤ i ≤ 2M , by
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hi(x) =


1, x ∈ [σ1(i), σ2(i)],

−ψi, x ∈ [σ2(i), σ3(i)],

0, otherwise,

(5)

where
ψi =

σ2(i)− σ1(i)

σ3(i)− σ2(i)
. (6)

Here, some particulars are provided on wavelets and their notations that
will be used in upcoming sections:

1. In general one can write the integrals of Haar wavelets as

Pi,1(x) =

∫ x

0

hi(s) ds, (7)

Pi,k+1(x) =

∫ x

0

Pi,k(s) ds, 1 ≤ i ≤ 2M, k = 1, 2, . . . . (8)

The calculation of the first two integrals of the wavelet h1 are P1,1(x) =

x and P1,2(x) =
x2

2 .

In general, the first two integrals for each of the rest wavelets are

Pi,1(x) =


x− σ1(i), x ∈ [σ1(i), σ2(i)],

−ψi(σ3(i)− x), x ∈ [σ2(i), σ3(i)],

0, otherwise,

(9)

Pi,2(x) =



0, x < σ1(i),

1
2
(x− σ1(i))2, x ∈ [σ1(i), σ2(i)],

1
2
(σ2(i)− σ1(i))(σ3(i)− σ1(i))− 1

2
ψi(σ3(i)− x)2, x ∈ [σ2(i), σ3(i)],

1
2
(σ2(i)− σ1(i))(σ3(i)− σ1(i)), x ≥ σ3(i).

(10)

2. Piecewise orthogonality of the nonuniform Haar wavelets can be ob-
served as

∫ 1

0

hi(x)hi′(x) dx =

 ψi(σ3(i)− σ1(i)), i = i′,

0, i ̸= i′.
(11)

3. Also, we have the following bounds for Pi,k(x) [38]:
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Pi,0(x) ≤ 1, Pi,1(x) ≤
1

2j + 1
, i > 1, (12)

P1,k(x) ≤
1

k!
, Pi,k(x) <

8

3(⌊(k + 1)/2⌋!)2

(
1

2j+1

)2

, k ≥ 2, i > 1.

(13)

2.2 Numerical method

Any square-integrable function y(x) can be expressed as an infinite linear
combination of Haar wavelets as [12]

y(x) =

∞∑
i=1

cihi(x), x ∈ (0, 1). (14)

Here, if y(x) is a piecewise constant function or if we can approximate it with
a piecewise constant function, then this series may terminate in a finite sum.

If we denote the approximate solution by U , then following this discussion,
we can consider the approximation of the second-order derivative as

d2U

dx2
=

2M∑
i=1

pihi(x), (15)

where the coefficient pi’s are wavelet coefficients.

Integrating (15) from 0 to x, and using the boundary condition at x = 0,
we obtain the approximation for the first-order derivative as follows:

dU

dx
=
γ0
ε

+

2M∑
i=1

piPi,1(x). (16)

Again integrating (16), from 0 to x, we obtain the following approximation
of the exact solution u:

U(x) = U(0) +
γ0
ε
x+

2M∑
i=1

piPi,2(x). (17)

Next, to obtain the approximation of the integral boundary condition
multiply U(x) by ξ(x) in (17) and integrate from 0 to 1 to get
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0

ξ(x)U(x)dx =U(0)

∫ 1

0

ξ(x) dx+
γ0
ε

∫ 1

0

xξ(x) dx

+

∫ 1

0

ξ(x)

(
2M∑
i=1

piPi,2(x)

)
dx. (18)

Rewriting (18), we get the approximate solution at x = 0 as

U(0) =
γ1 − γ0

ε

∫ 1

0
xξ(x) dx−

∫ 1

0
ξ(x)

(∑2M
i=1 piPi,2(x)

)
dx∫ 1

0
ξ(x) dx

(19)

with
∫ 1

0
ξ(x) dx ̸= 0.

Now, use the expressions for d2U
dx2 ,

dU
dx , and U(x) from (15), (16), and (17),

respectively, in previous equation. Then substituting the collocation points
considered at the midpoints of the mesh subintervals, that is,

xck =
xk−1 + xk

2
, k = 1, . . . , 2M, (20)

we get the following system of linear equations

2M∑
i=1

pi[εhi(x
c
k) + a(xck)Pi,1(x

c
k)] = f(xck)− a(xck)

γ0
ε
, 1 ≤ k ≤ 2M. (21)

In the standard form, we represent this system as AX = B, where A =

[ak,i]2M×2M is the coefficients matrix in the associated system of linear equa-
tions, X = [pk]2M×1 is the solution vector, and B = [bk]2M×1 is the known
vector, with ak,i = εhi(x

c
k)+a(x

c
k)Pi,1(x

c
k) and bk = f(xck)−a(xck)

γ0

ε . We can
solve this system with the help of any known method and thus the solution
is completely known using (17).

3 Construction and properties of adaptive mesh

This section explains the construction of a nonuniform adaptive mesh defined
by using the equidistribution principle. Some insights into the adaptive mesh
are also provided which will be used in the error analysis section.

Equivalently to (3), we define the nonuniform adaptive mesh Ḡ2M = {0 =

x0, . . . , x2N = 1} using the equidistribution principle as follows:
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1149 Adaptive mesh based Haar wavelet approximation for a singularly ...∫ xi

xi−1

M(s, u(s)) ds =
1

2M

∫ 1

0

M(s, u(s)) ds, 1 ≤ i ≤ 2M. (22)

In another form, the mesh equidistribution can be seen as a mapping x =

x(ξ), which relates the computational coordinate ξ ∈ [0, 1] to the physical
coordinate x ∈ [0, 1], defined by∫ x(ξ)

0

M(s, u(s)) ds = ξ

∫ 1

0

M(s, u(s)) ds. (23)

Motivated by [8, 3, 23], we choose the monitor function of the following form:

M(x, u(x)) = β +

∣∣∣∣d2u(x)dx2

∣∣∣∣1/2, (24)

where the positive constant β is introduced to maintain the reasonable dis-
tribution of the node points throughout the domain; if we do not include
β, then the equidistribution results in node starvation outside the boundary
layer part.

Now, consider the following approximation of d2u(x)
dx2 ,

d2u(x)

dx2
≈ η

ε2
e−

α
ε x,

where the constant η is independent of x and ε.

Hence,∫ 1

0

∣∣∣∣d2u(x)dx2

∣∣∣∣1/2 dx ≡ 2 |η|1/2

α

(
1− e−

α
2ε

)
≈ 2 |η|1/2

α
= Λ (say). (25)

Now, using the definition (23), equidistribution of the monitor function
(24) leads to the scaling

e

(
− α

2εx(ξ)
)
− β

Λ
x(ξ) = 1−

(
β

Λ
+ 1− e−

α
2ε

)
ξ. (26)

By this scaling, a nonuniform mesh in physical coordinates {xk}2Mk=0 cor-
responds from an equispaced mesh {ξk = k/2M}2Mk=0 in computational coor-
dinates. So, the above equation is written as

e

(
− α

2εxk

)
− β

Λ
xk = 1−

(
β

Λ
+ 1− e−

α
2ε

)
k

2M
. (27)
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Hence, the adaptively generated mesh points are given by the solution of
the nonlinear algebraic equation (27).

Throughout the analysis, we take β = Λ. An important observation that
we shall use in error analysis is obtained by using the bounds from (2) as
follows: ∫ 1

0

M(x, u(x)) dx =

∫ 1

0

(
β +

∣∣∣∣d2u(x)dx2

∣∣∣∣1/2
)
dx

≤
∫ 1

0

β dx+ C

∫ 1

0

(
1 + ε−2e−

α
ε x
)1/2

dx

= β + C

∫ 1

0

(
1 +

(
ε−1e−

α
2εx
)2)1/2

dx

≤ β + C

∫ 1

0

(
1 + ε−1e−

α
2εx
)
dx

≤ β + C +
2C

α
(1− e

α
2ε ) ≤ C. (28)

4 Error analysis

In the proposed method, an approximation of the solution up to the Jth level
of resolution is used, and the expression (17) represents the discrete version
of the problem. So if the actual representation of the solution is taken in
(17), then the expression for the exact solution is obtained as

u(x) = u(0) +
γ0
ε
x+

∞∑
i=1

piPi,2(x). (29)

On comparing (17) and (29), we can write the error term as the truncated
part of the infinite sum

EJ = |u(x)− U(x)| =

∣∣∣∣∣
∞∑

i=2M+1

piPi,2(x)

∣∣∣∣∣ . (30)

Now, to estimate the error bound completely, we calculate the bounds on
both pi’s and Pi,2(x).

To calculate the bounds for the coefficients pi’s, multiply hr in both sides
of the expression
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1151 Adaptive mesh based Haar wavelet approximation for a singularly ...

d2u

dx2
=

∞∑
i=1

pihi(x),

for some particular natural number r, and integrate in 0 to 1. Then by using
the orthogonality property of wavelets (11), we get∫ 1

0

d2u

dx2
hr(x) dx = prψr(σ3(r)− σ1(r)).

This gives

pi =
1

ψi (σ3(i)− σ1(i))

∫ 1

0

d2u

dx2
hi(x) dx

=
1

ψi (σ3(i)− σ1(i))

[∫ σ2(i)

σ1(i)

d2u

dx2
dx− ψi

∫ σ3(i)

σ2(i)

d2u

dx2
dx

]

=
(σ3(i)− σ2(i))

(σ3(i)− σ1(i)) (σ2(i)− σ1(i))

[∫ σ2(i)

σ1(i)

d2u

dx2
dx

− (σ2(i)− σ1(i))

(σ3(i)− σ2(i))

∫ σ3(i)

σ2(i)

d2u

dx2
dx

]

≤ 1

(σ2(i)− σ1(i))

∫ σ2(i)

σ1(i)

d2u

dx2
dx− 1

(σ3(i)− σ2(i))

∫ σ3(i)

σ2(i)

d2u

dx2
dx

=
1

(σ2(i)− σ1(i))
2

∫ σ2(i)

σ1(i)

(σ2(i)− σ1(i))
d2u

dx2
dx

− 1

(σ3(i)− σ2(i))
2

∫ σ3(i)

σ2(i)

(σ3(i)− σ2(i))
d2u

dx2
dx.

For a positive integer s and a positive decreasing function Φ on an interval
[t1, t2], we have [5]∫ t2

t1

(t− t1)
s−1Φ(t) dt ≤ 1

s

(∫ t2

t1

Φ(t)1/s dt

)s

. (31)

So, using the above inequality (31), we get

pi ≤
1

2

(
1

(σ2(i)− σ1(i))

∫ σ2(i)

σ1(i)

(
d2u

dx2

)1/2

dx

)2

+
1

2

(
1

(σ3(i)− σ2(i))

∫ σ3(i)

σ2(i)

(
d2u

dx2

)1/2

dx

)2
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≤ 1

2

(
1

(σ2(i)− σ1(i))

∫ σ2(i)

σ1(i)

[
1 +

(
d2u

dx2

)1/2
]
dx

)2

+
1

2

(
1

(σ3(i)− σ2(i))

∫ σ3(i)

σ2(i)

[
1 +

(
d2u

dx2

)1/2
]
dx

)2

.

Next, we use the equidistribution principle (22) and the observation (28) to
get

pi ≤
1

2

(
1

(σ2(i)− σ1(i))

(σ2(i)− σ1(i))

2M

∫ 1

0

M dx

)2

+
1

2

(
1

(σ3(i)− σ2(i))

(σ3(i)− σ2(i))

2M

∫ 1

0

M dx

)2

≤ CM−2 = C2−2j .

Now, we can estimate the error bound from (30) by substituting these bounds
of pi and the bounds of Pi,2(x) from (13) as follows:

EJ =

∣∣∣∣∣
∞∑

i=2M+1

piPi,2(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=J+1

2j−1∑
l=0

p2j+l+1P2j+l+1,2(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑

j=J+1

C
8

3 (⌊(3)/2⌋!)2
2−2j−2

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
∞∑

j=J+1

2j−1∑
l=0

2−2j−2

∣∣∣∣∣∣
≤ C2−2J = O(M−2).

This result ensures the second-order convergence of the proposed method.

5 Numerical experiments

In this section, two important elements of numerical experiments are dis-
cussed; the numerical algorithm followed for the computation process and
the numerical stability.
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5.1 Adaptive mesh generation

An important feature of this work is the construction of a robust adaptive
nonuniform mesh based on the equidistribution principle. Here, we intro-
duce a variant of De Boor’s algorithm [5] for the construction of adaptive
mesh. Based on finite difference methods, this algorithm has been applied
to various classes of singularly perturbed problems (see [4, 14, 15, 23, 22]
and the references therein). Also, for some classes of problems, the conver-
gence of this algorithm is discussed in [40, 7]. In discrete form, we write the
equidistribution condition (22) as

(xk − xk−1)Mk =
1

2M

2M∑
i=1

(xi − xi−1)Mi, k = 1, . . . , 2M, (32)

where Mi is the discrete version of the monitor function. However, in [20],
it is remarked that the above discrete form is not necessary to be enforced
strictly, rather it will work sufficiently well to stop the iterative algorithm to
the following weakened form:

(xk − xk−1)Mk ≤ C0
2M

2M∑
i=1

(xi − xi−1)Mi, k = 1, . . . , 2M, (33)

with C0 > 1 taken as a relaxing constant. By the user-chosen value of C0, one
can manage the number of iterations and the adaptiveness of the mesh during
the solution process. The choice of C0 works such that a smaller value of C0,
results in a more number of iterations, and a more accurate solution. For the
example problems, we are taking C0 = 1.05. The numerical algorithm below
provides a complete overview of the adaptive mesh generation mechanism.

Numerical algorithm for the adaptive mesh and solu-
tion
Input: J,M ∈ N, 0 < ε ≤ 1, and C0 > 1.
Output: Adaptive mesh {xk} and adaptive solution Uk.

1. Initialize the mesh taking x(r)k = k/2M, k = 0, ..., 2M , with r = 0.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1140–1167



Shukla, Saini and Devi 1154

2. Calculate U (r)
k from (21) on the collocation mesh points xc,(r)k given by

(20).

3. Compute the monitor function by

M(r)
k = β(r) +

∣∣∣∣∣d2U (r)
k

dx2

∣∣∣∣∣
1/2

, 1 ≤ k ≤ 2M − 1, (34)

by using approximation (15) for second-order derivative and define

β(r) =
(
x
c,(r)
1 − x

c,(r)
0

)[
2M∑
i=1

pihi(x
c,(r)
0 )

]1/2

+

2M∑
k=2

(xc,(r)k − x
c,(r)
k−1

)
[
2M∑
i=1

pihi(x
c,(r)
k )

]1/2
+

[
2M∑
i=1

pihi(x
c,(r)
k−1 )

]1/2
2


 .

4. For {x(r)k } and U (r)
k , set

H
(r)
k =

(
M(r)

k−1 +M(r)
k

2

)
(x

(r)
k − x

(r)
k−1), 1 ≤ k ≤ 2M,

where M(r)
k is calculated in Step 3 setting M(r)

0 = M(r)
1 .

5. Set B(r)
0 = 0 and B(r)

k =
∑k

i=1H
(r)
i , 1 ≤ k ≤ 2M . Then for stopping

criteria define
C(r) :=

2M

B(r)
2M

max
1≤k≤2M

H
(r)
k .

6. If C(r) ≤ C0, then go to Step 9.

7. Set Yk = kB(r)
2M/2M, 0 ≤ k ≤ 2M . Generate new mesh {x(r+1)

k } by
interpolating the points (B(r)

k , xk) and evaluating the interpolant at Yk,
0 ≤ k ≤ 2M .

8. Set r = r + 1 and return to Step 2.

9. Take {x(r)k } as the final adaptive mesh and U (r)
k as the final solution.

Stop.
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5.2 Numerical stability

To show the stability of the proposed method, we follow the following defi-
nition of stability [26].

Definition 1. A numerical method for solving differential equations is said
to be stable if, for the associated system of linear equations AX = B, A−1

exists and is bounded. That is,

∥A−1∥ ≤ C.

Now, we provide the implementation of the proposed method in the fol-
lowing two test problems to confirm the theoretical findings with the help of
some tables and graphs.

Example 1. [33] Let us consider the first example as the following singularly
perturbed differential equation:

εu′′(x) + u′(x) = 1, for 0 < x < 1, (35)

concerning the given conditions u′(0) = 1
ε and

∫ 1

0
u(x)dx = 1

2 .

The exact solution to the above problem is known

u(x) = −(ε2 − ε)
(
1− e(−

1
ε )
)
+ (ε− 1)e(

−x
ε ) + x.

Example 2. [33] Let us consider the second example as the following singu-
larly perturbed differential equation:

εu′′(x) + u′(x) = (ε− 2)e−x, for 0 < x < 1, (36)

subject to the given conditions u′(0) = 1
ε and∫ 1

0

u(x)dx = 1− e−1 + c1 + 0.5εc2

(
1− e(

−2
ε )
)
.

The exact solution to the above problem is known

u(x) = c1 + c2e

(
−2x
ε

)
+ e−x,

where
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c1 = −3

7

(
e−1 +

1

3
e

−1
4 + (1 + e

−2
ε ) +

1

3
e

−1
2ε

)
c2,

c2 = −1 + ε

2
.

To confirm the numerical stability of the proposed method for the exam-
ple problems, we present the following tables of the norm of the inverse of
the wavelet coefficient matrix A for both examples in Table 1. The finite
condition numbers of matrix A depict that the matrix is well-conditioned
even if we are increasing the resolution levels. Therefore, we can conclude
that the method is reasonably stable.

Table 1: Condition number of coefficient matrix for various resolution levels for both
examples.

ε = 10−2 ε = 10−5

J Example 1 Example 2 Example 1 Example 2

5 2.7119e+02 6.1539e+02 3.4215e+04 3.5816e+04

6 3.7465e+02 8.6552e+02 1.5364e+05 1.7826e+05

7 5.1816e+02 1.1982e+03 4.2509e+05 6.6213e+05

8 7.2116e+02 1.6866e+03 7.9665e+05 1.7912e+06

9 1.0101e+03 2.3338e+03 1.0983e+06 2.4694e+06

Figure 1 displays the comparison of exact and numerical solutions of both
examples for ε = 10−3 and 2M = 128. These figures, clarify the effective
resolution of the boundary layer phenomena by using the present adaptive
mesh method. Furthermore, to demonstrate the relative applicability and
effectiveness of the proposed method, we define the following formulas for
the maximum absolute error EJ

ε , and the order of convergence ρJε :

EJ
ε = max

1≤i≤2M
|UJ

k − u(xck)|, ρJε = log2
(

EJ
ε

EJ+1
ε

)
, (37)

where UJ is the numerical solution at the resolution level J using the above
algorithm, u(x) is the exact solution. We also define the formulas for
parameter-uniform errors and the parameter-uniform order of convergence
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(a) Solution plot for Example 1
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(b) Solution plot for Example 2

Figure 1: Comparison of the numerical solution obtained by the proposed method with
the exact solution for ε = 10−3 and 2M = 128.

EJ = max
ε

|EJ
ε |, ρJ = log2

(
EJ

EJ+1

)
. (38)
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The maximum absolute errors and the order of convergence obtained by
using these formulas for different resolution levels and different values of ε
are presented in Tables 2 and 3. From these tables, we see the second-order
convergence rates, which are going to be stabilized as we move downwards
along the columns in the tables. Thus, from the last few rows of these tables,
we can observe the second-order parameter uniform nature of the proposed
method.

Table 2: Maximum point-wise errors EJ
ε , parameter-uniform errors EJ , order of conver-

gence ρJε , and parameter-uniform convergence order ρJ using the proposed method for
Example 1.

ε = 10−r J = 5 J = 6 J = 7 J = 8 J = 9

r = 1 1.3259e-04 3.2752e-05 8.1922e-06 2.0484e-06 5.1211e-07
2.0173 1.9993 1.9998 2.0000

r = 2 2.8088e-04 6.9246e-05 1.7126e-05 4.2623e-06 1.0634e-06
2.0202 2.0155 2.0065 2.0029

r = 3 3.6121e-04 8.0450e-05 1.8144e-05 4.3778e-06 1.0694e-06
2.1667 2.1486 2.0512 2.0334

r = 4 4.9163e-04 8.3995e-05 1.8813e-05 4.4019e-06 1.0789e-06
2.5492 2.1586 2.0955 2.0286

r = 5 5.0123e-04 8.5858e-05 1.9028e-05 4.4241e-06 1.0919e-06
2.5454 2.1738 2.1047 2.0185

r = 6 1.9057e-03 8.8126e-05 1.9267e-05 4.4415e-06 1.0959e-06
4.4346 2.1934 2.1170 2.0189

r = 7 4.9062e-03 1.6531e-04 1.9367e-05 4.4512e-06 1.0966e-06
4.8914 3.0935 2.1213 2.0212

EJ 4.9062e-03 1.6531e-04 1.9367e-05 4.4512e-06 1.0966e-06
ρJ 4.8914 3.0935 2.1213 2.0212

In Tables 4 and 5, we compare the results obtained by the present method
based upon a nonuniform equidistribution mesh with the second-order con-
vergent numerical method in [33] based on a nonuniform graded mesh. We
can observe that we can achieve better accuracy in the same efforts, that is,
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Table 3: Maximum point-wise errors EJ
ε , parameter-uniform errors EJ , order of conver-

gence ρJε , and parameter-uniform convergence order ρJ using the proposed method for
Example 2.

ε = 10−r J = 5 J = 6 J = 7 J = 8 J = 9

r = 1 1.5675e-04 3.9077e-05 9.7696e-06 2.4427e-06 6.1071e-07
2.0041 1.9999 1.9998 1.9999

r = 2 3.2592e-04 8.0649e-05 2.0186e-05 5.0492e-06 1.2643e-06
2.0148 1.9983 1.9992 1.9977

r = 3 4.6697e-04 9.4866e-05 2.3479e-05 5.8828e-06 1.4740e-06
2.2994 2.0145 1.9968 1.9968

r = 4 5.3535e-04 1.0452e-04 2.5524e-05 6.1883e-06 1.5182e-06
2.3567 2.0339 2.0442 2.0272

r = 5 6.0230e-04 1.0858e-04 2.6228e-05 6.4441e-06 1.6019e-06
2.4717 2.0496 2.0251 2.0082

r = 6 7.0127e-03 1.1826e-04 2.7867e-05 6.6985e-06 1.6719e-06
5.8899 2.0853 2.0566 2.0023

r = 7 9.9962e-03 1.9131e-04 2.9267e-05 6.8812e-06 1.7166e-06
5.7074 2.7086 2.0885 2.0031

EJ 9.9962e-03 1.9131e-04 2.9267e-05 6.8812e-06 1.7166e-06
ρJ 5.7074 2.7086 2.0885 2.0031

with the same discretization parameters from the same values of perturbation
parameter. This also supports the suitability of the proposed method.

Table 4: Comparison of maximum point-wise errors for Example 1.

ε = 10−3 ε = 10−7

J Present method Method in [33] Present method Method in [33]

5 3.6121e-04 1.7061e-03 4.9062e-03 1.7134e-03

6 8.0450e-05 4.2778e-04 1.6531e-04 4.2960e-04

7 1.8144e-05 1.0701e-04 1.9367e-05 1.0746e-04

8 4.3778e-05 2.6753e-05 4.4512e-06 2.6855e-05

9 1.0694e-06 6.6882e-06 1.0966e-06 6.7071e-06
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Table 5: Comparison of maximum point-wise errors for Example 2.

ε = 10−3 ε = 10−7

J Present method Method in [33] Present method Method in [33]

5 4.6697e-04 1.6560e-03 9.9962e-03 1.6560e-03

6 9.4866e-05 4.1311e-04 1.9131e-04 4.1298e-04

7 2.3479e-05 1.0331e-04 2.9267e-05 1.0327e-04

8 5.8828e-06 2.5820e-05 6.8812e-06 2.5793e-05

9 1.4740e-06 6.4546e-06 1.7166e-06 6.4489e-06

Table 6: Comparison of CPU computational times (in seconds) for the wavelet approx-
imations on graded mesh [33] and equidistributed meshes with ε = 10−5 for Example
1.

J 5 6 7 8 9 10

Equidistribution mesh 1.5844 1.6693 1.6898 1.7221 2.1088 17.2492

Graded mesh [33] 1.6718 1.6899 1.7241 1.7175 2.0794 14.9256

Table 6 shows the comparison of computational time (in seconds) in CPU
for the wavelet approximation on the equidistribution mesh and the graded
mesh. The CPU time is reported by averaging a few executions for a fixed
value of ε = 10−5 at each value of J = 5, . . . , 10. It can be seen that the
computational time is lesser for equidistribution mesh for smaller levels of
resolutions. However as the resolution increases, because of the iterative al-
gorithm of the adaptive mesh generation computational time increases fast.
All the numerical experiments are performed using MATLAB R2019a (Math-
works Inc.) on a 64-bit Windows 10 machine, with Intel(R) Core(TM) I5 7th
Gen 7200U processor running at 2.50 GHz and 8.00 GB RAM.

At last, we included two Figures 2 and 3 for both examples, respectively,
showing the trajectory of the formation of adaptive mesh per iteration and the
final position of adaptive mesh points. These figures show that the equidis-
tribution mesh is highly adaptive towards the boundary layers present in
singular perturbation problems.
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(a) Mesh trajectory per iteration
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(b) Final position of mesh points

Figure 2: Moving mesh trajectory for each iteration and density of mesh points in the
final adaptive mesh, respectively, for Example 1 with ε = 10−3 and 2M = 128.
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(a) Mesh trajectory per iteration

0 20 40 60 80 100 120 140

2M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
es

h
 P

o
in

ts
 P

o
si

ti
o

n

(b) Final position of mesh points

Figure 3: Moving mesh trajectory for each iteration and density of mesh points in the
final adaptive mesh, respectively, for Example 2 with ε = 10−3 and 2M = 128.

6 Conclusions:

The purpose of this article was to introduce an efficient nonuniform wavelet-
based numerical method on an adaptive mesh generated by equidistribution

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1140–1167



1163 Adaptive mesh based Haar wavelet approximation for a singularly ...

of a specially chosen monitor function for a class of singularly perturbed
convection-diffusion problems with nonlocal boundary conditions. Rigorous
error analysis for the proposed method was done and the parameter uni-
form convergence of the second-order is established. Furthermore, the com-
putational stability of the proposed method was observed for two example
problems, and the numerical results confirmed the convergence result. The
application of a wavelet method together with a posteriorly generated equidis-
tribution mesh is itself a novelty and the significant difference in the accuracy
of results proves the best applicability of the proposed method over existing
numerical methods. Applying the wavelet methods on a posteriorly gener-
ated equidistribution mesh for more complex problems can be the motivation
for many future works.
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