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A nonmonotone trust-region-approach
with nonmonotone adaptive radius for

solving nonlinear systems

K. Amini, H. Esmaeili and M. Kimiaei

Abstract

This paper presents a trust-region procedure for solving systems of non-
linear equations. The proposed approach takes advantages of an effective
adaptive trust-region radius and a nonmonotone strategy by combining both
of them appropriately. It is believed that selecting an appropriate adaptive

radius based on a suitable nonmonotone strategy can improve the efficiency
and robustness of the trust-region framework as well as can decrease the com-
putational cost of the algorithm by decreasing the number of subproblems
that must be solved. The global convergence to first order stationary points

as well as the local q-quadratic convergence of the proposed approach are
proved. Numerical experiments show that the new algorithm is promising
and attractive for solving nonlinear systems.

Keywords: Nonlinear equations; Trust-region framework; Adaptive radius;
Nonmonotone technique.

1 Introduction

In this paper, we consider the nonlinear system of equations

F (x) = 0, x ∈ Rn, (1)

where F : Rn → Rn is a continuously differentiable mapping in the form
F (x) := (F1(x), F2(x), · · · , Fn(x))

T . If F (x) has a zero, then the nonlinear
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system (1) is equivalent to the following nonlinear unconstrained least-squares
problem

min f(x) := 1
2∥F (x)∥

2

s.t. x ∈ Rn,
(2)

where ∥.∥ denotes the Euclidean norm. The trust-region frameworks for
solving system of nonlinear equations (1) are a popular class of iterative
procedures that in each iteration generate a trial step dk by computing an
exact or approximate solution of the following subproblem

min mk(xk + d) := 1
2∥Fk + Jkd∥2 = fk + dTJT

k Fk + 1
2d

TJT
k Jkd

s.t d ∈ Rn and ∥d∥ ≤ ∆k.
(3)

where fk := f(xk), Fk := F (xk), Jk := F ′(xk), Jacobian of F (x), and ∆k > 0
is trust-region radius. The ratio

rk =
fk − f(xk + dk)

mk(xk)−mk(xk + dk)
. (4)

plays a main role in trust region frameworks. Obviously, the model matches
the original problem at the current iteration xk whenever rk is sufficiently
close to 1. Then the agreement is weak or there is no agreement whenever
rk is near zero and there is not agreement when rk is negative. Generally,
if rk is greater than a positive constant µ, the trial step dk will be accepted
and leading to xk+1 := xk + dk. In this case, it is safe to increase trust
region radius in the next iteration. Otherwise, the trust-region radius should
be shrunk and the subproblem (3) will be solved again to possibly find an
acceptable trial point in the sequel of the process.

It is known that the traditional trust-region framework has some draw-
backs: a) the very small trust-region radius ∆k, increases the total number
of the iterates, b) the remarkably large trust-region radius ∆k increases the
total number of solving subproblems, c) ratio (4) does not suffice to cre-
ate the agreement between the quadratic model and the objective function
in trust-region methods leading to increasing computational cost. Using the
adaptive radius is an appropriate idea to overcome drawbacks (a) and (b). As
a result, many researchers have investigated on finding the best trust-region
radius ∆k, but no one has actually claimed a general rule for generating
the trust-region radius. Therefore, in order to decrease the total number of
solving subproblems for an arbitrary problem, some adaptive processes de-
termining the radius have been proposed, see [3,33,45]. For example, Zhang
and Wang [44] proposed an adaptive radius by

∆k = cpk∥Fk∥δ,

where 0 < c < 1 and 0.5 < δ < 1 are constant, also pk is a non-negative
integer starting from zero. The major advantage of this method is that the
radius does not stay very large and therefore it is possible to prevent resolving
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the trust region subproblem. This proposal has some disadvantages: Firstly,
the sequence generated by this method is superlinearly convergent with the
convergence order 2δ. Secondly, the efficiency of the numerical results is
largely dependent on the choice of δ. Finally, this method cannot adequately
prevent the very small trust-region radius. To overcome these drawbacks,
Fan and Pan in [15] suggest that

∆k = cpkM∥Fk∥,

where it is also another satisfactory radius with a constant M , an integer pk
and c ∈ (0, 1). This choice for the trust region radius plays an important
role in proving the quadratic convergence and also prevents some deal from
introducing the intensely small trust-region radius. In this method, if ∥Fk∥
is very small, then the constant M must be chosen so large that the radius is
not too small. But for some problems in which ∥Fk∥ is large, M∥Fk∥ will be
very large and the number of solving subproblems may be increased. Thus,
the amount of computation and the cost of solving problem will be increased.

One of the convenient ways to overcome the drawback (c), is the nonmono-
tone techniques that can improve the efficiency and the robustness of trust
region algorithms, especially when it is applied to highly nonlinear problems,
in the presence of narrow curved valley, see for examples [1,2,4,18–20,43,46].
Therefore, a nonmonotone strategy can be employed to increase the efficiency
of the proposed procedures.

Contribution. The primary goal in the design of the new method is de-
creasing computational cost by combining two nonmonotone techniques and
adaptive radius trust region. We hope that combining these two techniques
can improve numerical performance and efficiency of algorithm. We attain
this designed goal by building a new adaptive radius based on nonmonotone
technique. The global convergence to first-order critical points along with
q-quadratic convergence are being established. The numerical experiments
confirm the efficiency and the robustness of the proposed method for solving
systems of nonlinear equations.

Organization. This paper is organized as follows: The structure of
algorithm will be described after a new adaptive trust-region radius and a
nonmonotone technique are proposed in Section 2. In Section 3, we will inves-
tigate the global convergence and the quadratic convergence rate of the new
algorithm under some suitable assumptions. Numerical results are reported
in Section 4. Finally, we end up the paper by some conclusive remarks given
in Section 5.
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2 Motivation and algorithmic structure

It is well-known that the traditional approaches in unconstrained optimiza-
tion generally use a globalization technique, like line search or trust-region,
to guarantee the global convergence of the algorithm. These globalization
techniques mostly enforce a monotonicity to the produced sequence of the
objective function values which usually causes a short step to be produced
and so a slow numerical convergence encountering highly nonlinear problems
in the presence of a narrow curved valley, see [1, 2, 4, 9, 18, 43]. For example,
the traditional trust-region framework exploits the ratio (4) which leads to

fk − fk+1 ≥ mk(xk)−mk(xk + dk) > 0.

This condition clearly implies that the sequence {fk} should be monotone.
In order to avoid this drawback of the Armijo-type line search globalization
techniques, a nonmonotone strategy was introduced by Grippo, Lampariello
and Lucidi in [18] for unconstrained optimization problems while they mod-
ified the Armijo condition by the following condition

f(xk + αkdk) ≤ fl(k) + δαkg
T
k dk, (5)

where δ ∈ (0, 1), gk := ∇f(xk), the gradient of f(x) in xk, and

fl(k) = max
0≤j≤m(k)

{fk−j}, k ∈ N ∪ {0}, (6)

in which m(0) := 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, N} with N ≥ 0. The
theoretical and numerical results have shown that the proposed technique has
some remarkable effects and improves both the possibility of finding the global
optimum and the rate of convergence for algorithms. Motivated by their
work, Deng et al. in [9] made some changes in the ratio (4) which assesses
the agreement between the quadratic model and the objective function in
trust-region methods. In addition thy introduced the first nonmonotone trust
region algorithm. This idea was developed further by Zhou and Xiao [38,46],
Xiao and Chu [37] and Toint [35,36]. The most common nonmonotone ratio
is defined as follows:

r̂k :=
fl(k) − f(xk + dk)

mk(xk)−mk(xk + dk)
. (7)

To overcome disadvantages (a) and (b), according to the proposed method
by Esmaeili and Kimiaei [11]. We define the new adaptive radius by

∆k := cpkNF l(k), (8)

in which 0 < c < 1, pk is the smallest nonnegative integer p such that r̂k ≥ µ
and
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NF l(k) := max
0≤j≤m(k)

{∥Fk−j∥}, k ∈ N ∪ {0}, (9)

in which m(0) := 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, N} with N ≥ 0.
The proposed adaptive trust region radius has some benefits. First, since
the sequence {NF l(k)} is reduced slowly and is greater than the sequence
{∥Fk∥} (see (11)), it prevents introducing the intensely small trust-region
radius as possible and thus prevents increasing the total number of iterates.
Second, Due to the decreasing sequence {NF l(k)}, ∆k will not stay too large
and it prevents increasing the number of solving subproblems. Hence, using
controlling the radius of trust-region, the new method can prevent the pro-
duction of larger trial step near the optimizer and smaller trial step far from
the optimizer.

Our assumptions are identical to those utilized for the proposed approach:

(H1) The level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} is bounded for any
given x0 ∈ Rn and F (x) is continuously differentiable on compact convex set
Ω containing the level set L(x0).

(H2) The matrix {Jk} is bounded and uniformly nonsingular on Ω, i.e. there
exists constants 0 < M0 ≤ 1 ≤M1 such that

∥Jk∥ ≤M1 and M0∥Fk∥ ≤ ∥JT
k Fk∥ ∀k ∈ N ∪ {0}, (10)

.
(H3) The decrease on the model mk is at least as much as a fraction of that
obtained by the Cauchy point, i.e. there exists a constant β ∈ (0, 1) such
that

mk(xk)−mk(xk + dk) ≥ β ∥JT
k Fk∥ min

{
∆k,

∥JT
k Fk∥

∥JT
k Jk∥

}
, (11)

for all k ∈ N ∪ {0}.

(H4) J(x) is Lipschitz continuous in L(x0), with Lipschitz constant γL.

We now incorporate both of the two nonmonotone and adaptive radius
terms into trust-region and outline the subsequent algorithm:
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Algorithm 1 NATR (Nonmonotone Adaptive Trust-Region Algorithm)

Input: An initial point x0 ∈ Rn, c, µ ∈ (0, 1), N > 0, ϵ > 0 and kmax.

Output: xb, fb;

1 Begin

2 ∆0 := ∥F0∥; fl(0) := 1/2∥Fl(0)∥2 ; NF l(0) := ∥F0∥; m(0) := 0; k := 0;

3 While ∥Fk∥ ≥ ϵ && k ≤ kmax do

4 p := 0; r̂k := 0;

5 While r̂k < µ do

6 specify the trial point dk by solving the subproblem (3) ;

7 compute F (xk + dk);

8 f(xk + dk) := 1/2 ∥F (xk + dk)∥2;
9 determine r̂k using (7);

10 If r̂k < µ then

11 p← p+ 1;

12 determine ∆k using (8);

13 end

14 end

15 xk+1 := xk + dk; Fk+1 := F (xk+1); fk+1 := f(xk+1); Jk+1 := J(xk+1);

16 compute Jk+1 and let m(k + 1) := min{m(k) + 1, N};
17 calculate NF l(k+1) by (9) and set fl(k+1) := 1/2NF 2

l(k+1);

18 select ∆k+1 := NF l(k+1);

19 k ← k + 1;

20 end

21 xb := xk; fb := fk;

22 end

In Algorithm 1, the cycle starting from Line 3 to Line 25 is called the
outer cycle, and the cycle starting from Line 5 to Line 14 is called the inner
cycle.

Remark 1. The inequality (11) is called the sufficient reduction condition,
see [32] and has been investigated by many authors when they extended some
inexact methods for solving subproblem (3), for example see [11,13–15]. For
global convergence purpose, it is enough to find a vector dk such that it gives
a sufficient reduction in the quadratic model mk. Well-known convergence
results [31] show that the trial step dk is required to give a reduction in the
model mk that is at least some fixed multiple of the decrease attained by the
Cauchy step at each iteration.

Lemma 1. Suppose that (H4) holds, the sequence {xk} is generated by Al-
gorithm 1 and dk is a solution of the subproblem (3) such that ∥F (xk) +
J(xk)dk∥ ≤ ∥F (xk)∥. Then, we have

|f(xk + dk)−mk(xk + dk))| ≤ O(∥dk∥2). (12)

Proof. See [9].
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The following lemma indicates that the inner cycle of Algorithm 1 termi-
nates in a finite number of inner iterates.

Lemma 2. Suppose that (H2)-(H4) hold and the sequence {xk} is generated
by Algorithm 1. Then, the inner cycle of Algorithm 1 is well-defined.

Proof. Assume that the inner cycle of Algorithm 1 cycles infinitely in the
iteration k, i.e., ∆p

k = cpNF l(k) → 0 as p → ∞, equivalently, for any η > 0,
we have ∆p

k < η for sufficiently large p. Using the fact that xk is not the
optimum of (2), we can conclude that there exists a constant ϵ > 0 such that
∥Fk∥ ≥ ϵ. Without loss of generality, let η := M0ϵ

M2
1
. This fact along with (H2)

and (11) imply

mk(xk)−mk(xk + dpk) ≥ β∥JT
k Fk∥ min

{
∆p

k,
∥JT

k Fk∥
∥JT

k Jk∥

}
≥ βM0∥Fk∥ min

{
∆p

k,
M0ϵ

M2
1

}
≥ βM0ϵ min {∆p

k, η}
= βM0ϵ∆

p
k,

(13)

where dpk is a solution of subproblem (3) corresponding to p in k-th iterate.
Now, Lemma 1 and (13) leads to∣∣∣∣ fk − f(xk + dpk)

mk(xk)−mk(xk + dpk)
− 1

∣∣∣∣ = ∣∣∣∣f(xk + dpk)−mk(xk + dpk)

mk(xk)−mk(xk + dpk)

∣∣∣∣
≤
O(∥dpk∥2)
βM0ϵ∆

p
k

≤
O((∆p

k)
2)

βM0ϵ∆
p
k

→ 0, as p→ ∞.

Therefore, there exists a sufficiently large pk such that

rk =
fk − f(xk + dpk

k )

mk(xk)−mk(xk + dpk

k )
≥ µ.

Besides, from the definition fl(k), it is clear that fl(k) ≥ fk. This fact along
with the previous inequality immediately implies r̂k ≥ rk ≥ µ which means
that the inner cycle of Algorithm 1 stops and so Algorithm 1 is well-defined.

Lemma 3. Suppose that (H1) holds and the sequence {xk} is generated by
Algorithm 1. Then, for all k ∈ N∪{0}, we have xk ∈ L(x0) and the sequence
{NF l(k)} is decreasing and convergent.

Proof. Using the definition of NF l(k), we have

∥Fk∥ ≤ NF l(k).
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By induction, the result evidently holds for k = 0 because NF l(0) = ∥F0∥.
Assuming xi ∈ L(x0) for i = 1, 2, . . . , k, we show that xk+1 ∈ L(x0), for all
k ∈ N. It can be seen

NF 2
l(k)

2
− ∥Fk+1∥2

2
= fl(k) − fk+1 ≥ µ(mk(xk)−mk(xk + dk)) > 0,

so
∥Fk+1∥ ≤ NF l(k) ≤ ∥F0∥.

Thus, the sequence {xk} is contained in L(x0). It will be proved that the
sequence {NF l(k)} is a decreasing sequence. We consider two following cases:

i) k ≥ N . In this case, we have m(k) = N . So, the definition of NF l(k)

along with this fact that ∥Fk+1∥ ≤ NF l(k) implies that

NF l(k+1) = max
0≤j≤N

{∥Fk+1−j∥} ≤ max{ max
0≤j≤N

{∥Fk−j∥}, ∥Fk+1∥}

= max{NF l(k), ∥Fk+1∥} = NF l(k).

ii) k < N . In this case, we have m(k) = k. For any k, ∥Fk∥ ≤ ∥F0∥,

NF l(k) = F0, ∀k.

These cases show that the sequence {NF l(k)} is a decreasing sequence. Ac-
cording to assumption H1 and xk ∈ L(x0), one can see that the sequence
{NF l(k)} is convergent.

By Lemma 3 and since f(xk) = 1
2∥F (xk)∥

2, we can conclude that the
sequence {fl(k)} is also decreasing and convergent.

3 Convergence theory

In this section, we provide the global convergence and q-quadratic rate of
results of the proposed algorithm.

Lemma 4. Suppose that {xk} is the sequence generated by Algorithm 1.
Then, we have

lim
k→∞

NF l(k) = lim
k→∞

∥F (xk)∥.

Proof. By Lemma 3.2 in [1] and f(xk) =
1
2∥F (xk)∥

2, we have

lim
k→∞

fl(k) = lim
k→∞

f(xk).

This implies that
lim
k→∞

NF l(k) = lim
k→∞

∥F (xk)∥.
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In order to establish the global convergence of Algorithm 1, one needs to
establish the following results.

Lemma 5. Suppose that assumptions (H2) and (H3) hold, the sequence {xk}
is generated by Algorithm 1 and dk is a solution of the subproblem (3). Then,
we have

mk(xk)−mk(xk + dk) ≥ Lk ∥Fk∥2, (14)

where Lk := βM0 min
{
cpk , M0

M2
1

}
.

Proof. Using (H2) and (11), we have

mk(xk)−mk(xk + dk) ≥ β∥JT
k Fk∥min

{
∆k,

∥JT
k Fk∥

∥JT
k Jk∥

}
= β∥JT

k Fk∥min

{
cpkFl(k),

∥JT
k Fk∥

∥JT
k Jk∥

}
≥ βM0∥Fk∥min

{
cpk∥Fk∥,

M0∥Fk∥
M2

1

}
≥ βM0∥Fk∥2 min

{
cpk ,

M0

M2
1

}
= Lk∥Fk∥2,

where Lk = βM0 min
{
cpk , M0

M2
1

}
. Therefore, the proof is complete.

At this point, the global convergence of Algorithm 1 based on the men-
tioned assumptions can be investigated.

Theorem 6. Suppose that Assumptions (H1)-(H4) hold. Then, Algorithm
1 either stops at a stationary point of f(x) or generates an infinite sequence
{xk} such that

lim
k→∞

∥Fk∥ = 0. (15)

Proof. By contradiction, let there exists a constant ϵ > 0 and an infinite
subset K ⊆ N satisfying

∥Fk∥ > ϵ, for all k ∈ K. (16)

Using (16), r̂k > µ and Lemma 5, we can conclude that

fl(k)−fk+1 = fl(k)−f(xk+dk) ≥ µ[mk(xk)−mk(xk+dk)] ≥ µ∥Fk∥2Lk ≥ µϵ2Lk.

The left-hand side of above inequality tends to become zero when k goes to
infinity and therefore Lk tends to 0. This means that pk → ∞ that clearly
is a contradiction with Lemma 2. Therefore, the hypothesis (16) is not true
and the proof is complete.
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To establish the quadratic convergence rate of the sequence generated by
Algorithm 1, an additional assumption is required as follows (see [11, 14, 15,
40,44]).

(H5) There exist constants c1 ≥ 1 and ρ1 ∈ (0, 1) such that

c1∥x− x∗∥ ≤ ∥F (x)∥ = ∥F (x)− F (x∗)∥, ∀x ∈ N(x∗, ρ1).

where x∗ is a solution of (1) and N(x∗, ρ1) := {x| ∥x− x∗∥ ≤ ρ1}.

Remark 2. By (H1) and (H4), the objective function F (x) is continuously
differentiable and J(x) is Lipschitz continuous. So, there exist two constants
γL > 0 and ρ2 ∈ (0, 1) such that

∥F (x)− F (y) + J(x)(x− y)∥ ≤ γL∥x− y∥2, for all x, y ∈ N(x∗, ρ2).

For the purpose of our q-quadratic convergence, we simply choose ρ :=
min[ρ1, ρ2].

Theorem 7. Suppose that Assumptions (H1)-(H5) hold and the sequence
{xk} generated by Algorithm 1 converges to x∗. Then, for k sufficiently
large, we have

xk+1 = xk + d0k,

where d0k is the solution of (3) corresponding to pk = 0. Furthermore, the
sequence {xk} converges to x∗ q-quadratically.

Proof. Let d0k be a solution corresponding to pk = 0 of the subproblem (3) ,
so d0k is a feasible solution for (3). This along with Lemma 3 and Theorem 1
imply

∥d0k∥ ≤ ∆0
k = NF l(k) → 0, as k → ∞. (17)

On the other hand, since pk = 0 and M0 ≤ 1 ≤M1, we obtain

Lk :=
βM2

0

M2
1

. (18)

Because of the fact that Algorithm 1 is not stopped, it is clear that we have
∥Fk∥ ≥ ϵ. This fact together with Lemma 2, (17) and (18) suggests that∣∣∣∣ fk − f(xk + d0k)

mk(xk)−mk(xk + d0k)
− 1

∣∣∣∣ = ∣∣∣∣mk(xk + d0k)− f(xk + d0k)

mk(xk)−mk(xk + d0k)

∣∣∣∣
≤ O(∥d0k∥2)

Lk∥Fk∥2
≤ O((∆0

k)
2)

βM2
0

M2
1
ϵ2

→ 0, as k → ∞.

This along with the fact fl(k) ≥ fk, for sufficiently large k, implies

r̂k ≥ µ.
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Thus, for all sufficiently large k, the trial point d0k is accepted by Algorithm
1, i.e. xk+1 = xk + d0k.

At this point, the quadratic convergence of the sequence {xk} generated
by Algorithm 1 is investigated. Regarding (H2), there exists a constant
M1 > 0 such that

∥Jk∥ ≤M1, for all x ∈ Ω. (19)

Using (19) along with the mean value theorem, for all xk ∈ N(x∗, ρ), we can
easily see that

∥Fk∥ = ∥Fk − F (x∗)∥ = ∥J(ξ)∥ ∥xk − x∗∥ ≤M1∥xk − x∗∥, (20)

for some ξ ∈ [xk, x∗]. As a result of this fact and Lemma 4, for any sufficiently
large k, it can be concluded that

Fl(k) ≤M1∥xk − x∗∥,

and so
∥d0k∥ ≤ NF l(k) ≤M1∥xk − x∗∥. (21)

From (H5), it is clear that

∥xk − x∗∥ ≤ 1

c1
∥Fk∥ ≤ 1

c1
NF l(k) ≤ NF l(k) = ∆0

k.

This fact directly implies that xk − x∗ is a feasible point for the subproblem
(3). Now, it is straightforwardly followed from Remark 2 and (21) that

1

2
∥Fk + Jkd

0
k∥2 = mk(xk + d0k) ≤ mk(xk + (x∗ − xk))

=
1

2
∥F (xk + Jk(xk − x∗))∥2

=
1

2
∥Fk − F∗ + Jk(xk − x∗)∥2

≤ γ2L
2
∥xk − x∗∥4.

(22)

Also (H6), (21) and (22), give us

c1∥xk+1 − x∗∥ ≤ ∥F (xk+1)∥ = ∥F (xk + d0k)∥
≤ ∥Fk + Jkd

0
k∥+O(∥d0k∥2)

≤ γL∥xk − x∗∥2,

for any sufficiently large k. So

∥xk+1 − x∗∥ = O(∥xk − x∗∥2).
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Hence, the sequence {xk} generated by the Algorithm 1 is q-quadratically
convergent. Therefore, the proof is completed.

4 Numerical experiments

In this section, we report some numerical experiments obtained by running
Algorithm 1 (NATR) in comparison with the nonmonotone trust-region algo-
rithm (NTR), the adaptive trust-region algorithm from Zhang et al. in [44]
(ATRZ), the nonmonotone version of it (NATRZ), the adaptive trust-region
algorithm of Fan and Pan in [15] (ATRF) and the nonmonotone version of it
(NATRF) on a set of nonlinear systems of equations with the dimension from
100 to 504 that are selected from the wide range of literatures . The problems
1-36 are chosen from Cruz et al. in [25] and the problems 37-42 are chosen
from Lukšan and Vlček in [28]. For all of these codes, the trust-region sub-
problems are solved by Steihaug-Toint procedure, see [8]. The Steihaug-Toint
algorithm terminates at xk + d when

∥∇mk(xk + d)∥ ≤ min

{
1

10
, ∥∇mk(xk + d)∥ 1

2

}
∥∇mk(xk + d)∥.

The Jacobian matrix Jk can be either evaluated analytically by a user-
supplied function or approximated using finite-differences formula provided
by the code. Since the exact computation cannot be appropriate for large
scale problems, similar to [5], we used the following finite-differences formula
to approximate the Jacobian matrix Jk

[Jk]·j ∼
1

hj
(F (xk + hjej)− Fk),

where [Jk]·j denotes the j-th column of Jk, ej is the j-th vector of the canonic
basis and

hj :=

{√
ϵm if xkj = 0,

√
ϵmsign(xkj )max{|xkj |,

∥xk∥1

n } otherwise.

All codes are written in MATLAB 9 programming environment with double
precision format in the same subroutine. In our numerical experiments, the
algorithms were stopped whenever

∥Fk∥ ≤ 10−5,

or when the total number of iterates exceeded 1000. During implementations,
It is checked that the codes be converged to the same point and only provided
data for problems that all algorithms converged to the identical point while
less than of 1 percent of problem was ignored.
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Figure 1: Iterates performance profile for the presented algorithms

While NATR algorithm takes advantages of the parameters µ = 10−6,
c = 0.5. The NTR algorithm employs the parameters µ1 = 0.1, µ2 = 0.9 and
updates trust-region radius like [8] by the following formula

∆k+1 :=

 c1∥dk∥ if rk < µ1,
∆k if µ1 ≤ rk ≤ µ2,
c2∆k if rk ≥ µ2,

where c1 = 0.25 and c2 = 0.3. We also decide to follow the literature [34] in
exploiting ∆0 = 1 as an initial trust-region radius for NTR. The parameters
of ATRZ and ATRF have been chosen the same as in articles [44] and [15],
respectively. Table 1 indicates the names and dimensions of the test problems
considered. Figures 1 and 2 give the performance profiles for all of the algo-
rithms with the choice of finite-differences Jacobian matrix for total number
of iterations and total number of function evaluations, respectively. Perfor-
mance profile gives, for every τ ≥ 1, the fraction of the number of problems
for which the algorithm is within a factor of τ of the best [10].

Figure 1 clearly indicates that NATR outperforms NTR, ATRZ, ATRF,
NATRZ and NATRF regarding the total number of iterates. In particular,
NATR has the most wins in nearly 81% of the test problems with the greatest
efficiency. Meanwhile, in the sense of the ability of completing a run success-
fully, it is the best among considered algorithms because it grows up faster
than the others and reaches 1 more rapidly. However, as illustrated in Figure
2, NATR implements are remarkably better than the others where it has the
most wins for almost 77% of performed tests concerning the total number of
function evaluations. Furthermore, Figures 1 and 2 show similar patterns in
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Figure 2: Function evaluations performance profile for the presented algo-
rithms

the sense of the ability of completing a run successfully. As a result, this fact
directly implies that the total number of solving the trust-region subprob-
lems is the notably decreased thanks to using the NATR algorithm. These
results imply that the proposed algorithm is an efficient and robust approach
for solving systems of nonlinear equations.

5 Concluding remarks

It is well-known that trust-region methods for solving systems of non-
linear equations have a remarkable numerical reliability as well as strong
theoretical convergence properties. Practical experiments of the trust-region
framework indicate that applying nonmonotone adaptive techniques for de-
termining trust-region radius declines the number of solving subproblems
and employing nonmonotone strategies increases the efficiency and robust-
ness of the algorithm. In this paper, by exploiting an effective adaptive trust
region radius based on a reliable nonmonotone strategy, a new nonmono-
tone trust region algorithm is introduced for solving systems of nonlinear
equations. Nevertheless, these modifications in the traditional trust-region
procedure are favorably encouraging so that the global and q-quadratic con-
vergence properties of the proposed algorithms are established. Numerical
results on a set of nonlinear systems indicate that the number of iterates
and the number of function evaluations are so close to each other that, by
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Table 1: List of test functions

Problem name Dim Problem name Dim
Exponential 1 500 Geometric 100
Exponential 2 500 Function 27 500
Extended Rosenbrock 500 Tridimensional valley 501
Chandrasekhar’s H-equation 500 Complementary 500
Singular 500 Hanbook 500
Logarithmic 500 Tridiagnal system 500
Broyden tridiagonal 500 Five-diagonal system 500
Trigexp 500 Seven-diagonal system 504
Variable band 1 500 Extended cragg and levy 500
Variable band 2 500 Extended Wood 500
Function 15 500 Triadiagnal exponential 500
Strictly convex 1 500 Brent 500
Strictly convex 2 500 Thorech 500
Function 18 501 Broyden banded 500
Zero Jacobian 500 Discrete integral equation 500
Geometric programming 100 Countercurrent reactors 1 504
Function 21 501 Singular Broyden 500
Linear function-full rank 1 500 Structured Jacobian 500
Linear function-full rank 2 500 Extended Powell Singular 500
Brown almost linear 500 Generalized Broyden banded 500
Variable dimensioned 500 Extended powell badly scaled 500

applying the proposed algorithm, significant profits in computational costs
can be obtained.
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غیر معادلات دستگاه حل برای غیریکنوا تطبیقی شعاع با غیریکنوا اطمینان ناحیه الگوریتم یک
خطی

کیمیایی۳ مرتضی و ۲ اسمعیلی حمید امینی۱، کیوان

ریاضی گروه علوم، دانشکده رازی، دانشگاه ۱

ریاضی گروه سینا، بوعلی دانشگاه ۲

ریاضی گروه اسدآباد، واحد اسلامی، آزاد دانشگاه ۳

١٣٩۴ مهر ٢٩ مقاله پذیرش ،١٣٩۴ تیر ١٣ شده اصلاح مقاله دریافت ،١٣٩۴ فروردین ١۶ مقاله دریافت

معرفی خطی غیر معادلات های دستگاه حل برای غیریکنوا اطمینان ناحیه روش یک مقاله این در : چکیده
و بکنوا غیر های تکنیک از همزمان استفاده کند. می استفاده مناسب تطبیقی شعاع یک از که گردد می
افزایش ای ملاحظه قابل طرز به را اطمینان ناحیه های روش کارایی تواند می مناسب اطمینان شعاع یک
همگرایی یابد. می کاهش شده حل مسائل زیر تعداد کاهش دلیل به نیز روش محاسباتی هزینه که جایی دهد
نمایانگر شده ارائه عددی نتایج است. گردیده اثبات مناسب شرایط تحت روش مجذوری q- و سراسری

باشد. می مشابه های الگوریتم با مقایسه در جدید الگوریتم مناسب سرعت و کارایی

های تکنیک تطبیقی؛ شعاع اطمینان؛ ناحیه الگوریتم غیرخطی؛ معادلات دستگاه : کلیدی کلمات
غیریکنوا.
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