[1] Agrawal, O.M.P. A general formulation and solution scheme for fractional optimal control problem, Nonlinear Dyn. 38 (2004), 323–337.
[2] Agrawal, O.M.P. A formulation and numerical scheme for fractional optimal control problems, J. Vib. Control. 14 (2008), 1291–1299.
[3] Agrawal, O.M.P. and Baleanu, D. A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vib. Control. 13 (2007), 1269–1281.
[4] Ahmad, H., Khan, M., Ahmad, I., Omri, M. and Alotaibi, M. A meshless method for numerical solutions of linear and nonlinear time-fractional Black–Scholes models, AIMS Math. 8 (2023), 19677–19698.
[5] Alquran, M., Sulaiman, T., Yusuf, A., Alshomrani, A. and Baleanu, D. Nonautonomous lump-periodic and analytical solutions to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation, Nonlinear Dyn. 111 (2023), 11429–11436.
[6] Ashpazzadeh, E., Lakestani, M. and Yildirim, A. Biorthogonal multiwavelets on the interval for solving multidimensional fractional optimal control problems with inequality constraint, Optim. Control Appl. Math. 41(5) (2020), 1477–1494.
[7] Biswas, R.K. and Sen, S. Fractional optimal control problems with specified final time, J. Comput. Nonlinear Dyn. 6(2) (2010), 021009.
[8] Chowdhury, D.R., Chatterjee, M. and Samanta, R.K. An artificial neural network model for neonatal disease diagnosis, International Journal of Artificial Intelligence and Expert Systems (IJAE), 2(3) (2011), 96–106.
[9] Dong, N.P., Long, H. and Khastan, A. Optimal control of a fractional order model for granular SEIR epidemic with uncertainty, Commun. Nonlinear Sci. Numer. Simul. 88 (2020), 105312.
[10] Effati, S. and Pakdaman, M. Optimal control problem via neural networks, Neural Comput. Appl. 23 (2013), 2093–2100.
[11] Elwasif, W. and Fausett, L.V. Function approximation using a sinc neural network, In: Proceedings of the SPIE, Volume 2760 (1996), 690–701.
[12] Ghasemi, S. and Nazemi, A.R. A neural network method based on MittagLeffler function for solving a class of fractional optimal control problems, AUT J. Model. Simul. 50(2) (2018), 211–218.
[13] Ghasemi, S., Nazemi, A. and Hosseinpour, S. Nonlinear fractional optimal control problems with neural network and dynamic optimization schemes, Nonlinear Dyn. 89 (2017), 2669–2682.
[14] Hashemi, M., Mirzazadeh, M. and Ahmad, H. A reduction technique to solve the (2+1)-dimensional KdV equations with time local fractional derivatives, Opt. Quantum Electron, 55(8) (2023), 721.
[15] Kirk, D.E. Optimal control theory: An introduction, Donver Publication, Inc. Mineola, New York, 2004.
[16] Lagaris, I.E. and Likas, A. Hamilton–Jacobi theory over time scales and applications to linear-quadratic problems, IEEE Trans Neural Netw. 9(5) (2012), 987–1000.
[17] Latif, S., Sabir, Z., Raja, M., Altamirano, G., Núñez, R., Gago, D., Sadat, R. and Ali, M. IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model, Multimed Tools Appl. 82 (2023), 18851–18866.
[18] Mohammadzadeh, E., Pariz, N., Hosseini sani, S.K. and Jajarmi, A. Optimal Control for a Class of Nonlinear Fractional-Order Systems Using an Extended Modal Series Method and Linear Programming Strategy, J. Control 10(1) (2016), 51–64.
[19] Nazemi, A. and Effati, S. An application of a merit function for solving convex programming problems, Comput. Ind. Eng. 66(2) (2013), 212–221.
[20] Nazemi, A. and Omidi, F. A capable neural network model for solving the maximum flow problem, J. Comput. Appl. Math. 236(14) (2012), 3498–3513.
[21] Nemati, S., Lima, P.M. and Torres, D.F.M. A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul. 78 (2019), 104849.
[22] Qayyum, M., Ahmad, E., Tauseef Saeed, S., Ahmad, H. and Askar, S. Homotopy perturbation method-based soliton solutions of the timefractional (2+1)-dimensionalWu–Zhang system describing long dispersive gravity water waves in the ocean, Front Phys. 11 (2023), 1178154.
[23] Saberi Nik, H., Effati, S. and Yildirim, A. Solution of linear optimal control systems by differential transform method, Neural Comput. Appl. 23 (2013), 1311–1317.
[24] Sabir, Z. and Guirao, J. A soft computing scaled conjugate gradient procedure for the fractional order Majnun and Layla romantic story, Mathematics 11 (2023), 835.
[25] Sabouri, J., Effati, S. and Pakdaman, M. A neural network approach for solving a class of fractional optimal control problems,Neural Process. Lett. 45 (2017), 59–74.
[26] Shi, J., Sekar, B.D., Dong, M.C. and Hu, X.Y. Extract knowledge from site-sampled data sets and fused hierarchical neural networks for detecting cardiovascular diseases, 2012 International Conference on Biomedical Engineering and Biotechnology, (2012), 275–279.
[27] Singh, H., Pandey, R.K. and Kumar, D. A reliable numerical approach for nonlinear fractional optimal control problems, Int. J. Nonlinear Sci. Numer. Simul. 22(5) (2021), 495–507.
[28] Souayeh, B. and Sabir, Z. Designing Hyperbolic Tangent Sigmoid Function for Solving theWilliamson Nanofluid Model, Fractal Fract. 7 (2023), 350.
[29] Stenger, F. A “Sinc-Galerkin” method of solution of boundary value problems, J. Math. Comp. 33(145) (1979), 85–109.
[30] Stenger, F. Sinc-related methods, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.
[31] Stenger, F. Summary of Sinc numerical methods, J. Comput. Appl. Math. 121 (2000), 379–420.
[32] Sugihara, M. Optimality of the double exponential formula–functional analysis approach–, Numer. Math. (Heidelb.) 75 (1997), 379–395.
[33] Sugihara, M. Near optimality of the sinc approximation, Math. Comput. 72 (2003), 767–786.
[34] Sulaiman, T.A., Yusuf, A., Alshomrani, A.S. and Baleanu, D. Wave solutions to the more general (2+1)-dimensional Boussinesq equation arising in ocean engineering, Int. J. Mod. Phys. 2350214 (2023), 2350214.
[35] Taherpour, V., Nazari, M. and Nemati, A. A new numerical Bernoulli polynomial method for solving fractional optimal control problems with vector components, Comput. Method. Differ. Equ. 9(2) (2021), 446–466.
[36] Vrabie, D. and Lewis, F. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems, Neural Netw. 22(3) (2009), 237–246.
[37] Zarin, R., Khan, M., Khan, A. and Yusuf, A. Deterministic and fractional analysis of a newly developed dengue epidemic model, Waves Random Complex Media, (2023), 1–34.
[38] Zil-E-Huma, Butt, A., Raza, N., Ahmad, H., Ozsahin, D. and Tchier, F. Different solitary wave solutions and bilinear form for modified mixedKDV equation, Optik, 287 (2023), 171031.
Send comment about this article