[1] Ali, A., Iqbal, Q., Asamoah, J. K. K., and Islam, S. Mathematical mod-eling for the transmission potential of Zika virus with optimal control strategies. Eur. Phys. J. Plus 137 (1) (2022), 1–30.
[2] Anjum, N., and He, J.-H.Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92 (2019), 134–138.
[3] Ashchepkov, L., Dolgy, D., Kim, T., and Agarwal, R. Optimal Control. Springer International Publishing, 2022.
[4] Berkani, S., Manseur, F., and Maidi, A. Optimal control based on the variational iteration method. Comput. Math. Appl. 64 (4) (2012), 604–610.
[5] El-Sayed, T. A., and El-Mongy, H. H. A new numeric–symbolic procedure for variational iteration method with application to the free vibration of generalized multi-span Timoshenko beam. J. Vib. Control 28 (7-8)(2022), 799–811.
[6] Ermakov, A., Marie, A., and Ringwood, J. V. Optimal control of pitch and rotational velocity for a cyclorotor wave energy device. IEEE Trans. Sustain. Energy 13 (3) (2022), 1631–1640.
[7] Gonzalez-Gaxiola, O., Biswas, A., Ekici, M., and Khan, S. Highly dis-persive optical solitons with quadratic–cubic law of refractive index by the variational iteration method. J. Opt. 51 (1) (2022), 29–36.
[8] He, J.-H. Variational iteration method–a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34 (4) (1999), 699–708.
[9] Jafari, H., Ghasempour, S., and Baleanu, D. On comparison between iterative methods for solving nonlinear optimal control problems. J. Vib. Control 22 (9) (2016), 2281–2287.
[10] Jajarmi, A., Pariz, N., Kamyad, A. V., and Effati, S. A novel modal se-ries representation approach to solve a class of nonlinear optimal control problems. Int. J. Innov. Comput. Inf. Control. 1 (2011), 2.
[11] Kim, Y., and Singh, T. Energy-time optimal control of wheeled mobile robots. J. Frankl. Inst. (2022).
[12] Kincaid, D., Kincaid, D. R., and Cheney, E. W. Numerical analysis: mathematics of scientific computing, vol. 2. American Mathematical Soc., 2009.
[13] Liu, S., You, H., Liu, Y., Feng, W., and Fu, S. Research on optimal control strategy of wind–solar hybrid system based on power prediction. ISA trans.123 (2022), 179–187.
[14] Lohéac, J., Varma, V. S., and Morărescu, I. C. Time optimal control for a mobile robot with a communication objective. Math. Comput. Simul. 201 (2022), 96–120.
[15] Ma, Z., and Zou, S. Optimal Control Theory: The Variational Method. Springer Singapore, 2021.
[16] Majumder, M., Tiwari, P. K., and Pal, S. Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: Optimal control with awareness and treatment. Nonlinear Dyn. (2022), 1–34.
[17] Matinfar, M., and Saeidy, M. A new analytical method for solving a class of nonlinear optimal control problems. Optim. Control Appl. Methods 35 (3) (2014), 286–302.
[18] Meng, L., Kexin, M., Ruyi, X., Mei, S., and Cattani, C. Haar wavelet transform and variational iteration method for fractional option pricing models. Math. Methods Appl. Sci. (2022).
[19] Mirhosseini-Alizamini, S. M., and Effati, S. An iterative method for sub-optimal control of a class of nonlinear time-delayed systems. Int. J. Control 92 (12) (2019), 2869–2885.
[20] Nadeem, M., and He, J.-H. He–Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and popula-tion dynamics. J. Math. Chem. 59 (5) (2021), 1234–1245.
[21] Saberi Nik, H., Effati, S., Motsa, S. S., and Shirazian, M. Spectral homo-topy analysis method and its convergence for solving a class of nonlinear optimal control problems. Numer. Algorithms 65 (1) (2014), 171–194.
[22] Saberi Nik, H., Effati, S., and Yildirim, A. Solution of linear optimal control systems by differential transform method. Neural. Comput. Appl. 23 (5) (2013), 1311–1317.
[23] Salkuyeh, D. K., and Tavakoli, A. Interpolated variational iteration method for initial value problems. Appl. Math. Model. 40 (5-6) (2016), 3979–3990.
[24] Shirazian, M., and Effati, S. Solving a class of nonlinear optimal control problems via he’s variational iteration method. Int. J. Control Autom. Syst 10 (2) (2012), 249–256.
[25] Shirazian, M., and Effati, S. A novel successive approximation method for solving a class of optimal control problems. Caspian Journal of Mathematical Sciences (CJMS) peer 9 (1) (2020), 124–136.
[26] Singh, G., and Singh, I. Semi-analytical solutions of three-dimensional (3d) coupled Burgers’ equations by new Laplace variational iteration method. Partial Differential Equations in Applied Mathematics (2022), 100438.
[27] Sun, J.-S. Approximate analytic solution of the fractal Fisher’s equation via local fractional variational iteration method. Therm. Sci. 26 (3 Part B) (2022), 2699–2705.
[28] Tao, Z.-L., Chen, G.-H., and Chen, Y.-H. Variational iteration method with matrix Lagrange multiplier for nonlinear oscillators. J. Low Freq. Noise Vib. Act. Control. 38 (3-4) (2019), 984–991.
Send comment about this article