[1] Brunner, H. Volterra integral equations: An introduction to theory and applications, Cambridge University Press, Cambridge/UK, 2017.
[2] Choi, K. and Lanterman, A.D. An iterative deautoconvolution algorithm for nonnegative functions, Inverse Prob., 21 (2005) 981–995.
[3] Dai, Z. and Lamm P.K. Local regularization for the nonlinear inverse autoconvolution problem, SIAM J. Numer. Anal., 46 (2008) 832–868.
[4] Feng, L. and Yang, X. Spectral regularization method for Volterra integral equation of the first kind with noise data, Acta Math. Sci. Ser. A, 40 (3)(2020) 650–661.
[5] Fleischer, G. and Hofmann, B. On inversion rates for the auto convolu-tion equation, Inverse Prob. 12 (1996) 419–435.
[6] Fleischer, G. and Hofmann, B. The local degree of ill-posedness and the autoconvolution equation, Nonlinear Anal. 30 (1997) 3323–3332.
[7] Fleischer, G., Gorenflo, R. and Hofmann, B. On the autoconvolution equation and total variation constraints, Z. Angew. Math. Mech., 79(1999) 149–159.
[8] Gerth, D., Hofman, B., Birkholz, S. and Koke, S.Regularization of an au-toconvolution problem in ultrashort laser pulse characterization, Inverse Probl. Sci. Eng. 22(2) ( 2013) 245–266.
[9] Gorenflo, R. and Hofmann, B. On autoconvolution and regularization, Inverse Prob., 10 (1994) 353–373.
[10] Janno, J. On a regularization method for the autoconvolution equation, Z. Angew. Math. Mech., 77 (1997) 393–394.
[11] Janno, J. Lavrent’ev regularization of ill-posed problems containing non-linear near-to-monotone operators with application to auto-convolution equation, Inverse Prob., 16 (2000) 333–348.
[12] Jozi, M. and Karimi, S. Direct implementation of Tikhonov regular-ization for the first kind integral equation J. Comp. Math., 40, (2022)335–353.
[13] Karakeev, T.T. and Imanaliev T. M. Regularization of Volterra linear integral equations of the first kind with the smooth data, Lobachevskii J. Math., 41 (2020) 39–45.
[14] Lamm, P.K. A survey of regularization methods for first-kind Volterra equations. Colton D., Engl H. W., Louis H. K., McLaughlin J. R., Run-dell W, eds. Surveys on Solution Methods for Inverse Problems. Vienna: Springer, (2000) 53–82.
[15] Liu, C.S. Optimally generalized regularization methods for solving linear inverse problems, CMC: Computers, Materials, Continua, vol. 29 (2012)103–127.
[16] Masouri, Z. and Hatamzadeh, S. A regularization-direct method to nu-merically solve first kind Fredholm integral equation, KYUNGPOOK Math. J. 60 (2020) 869–881.
[17] Plato, R. Iterative and parametric methods for linear ill-posed problems, TU Berlin, 1995.
[18] Ramlau, R. Morozov’s discrepancy principle for Tikhonov-regularization of nonlinear operators, Numer. Funct. Anal. Optim., 23 (2002) 147–172.
[19] Richter, M. Approximation of Gussian Random Element and Statistics, Stuttgart, B.G. Teubner, 1992.
[20] Titchmarsh, E.C. The zeros of certain integral functions, Proc. London Math. Society. 25 (1926) 283–302.
[21] Weichung, Y., Chan I-Yao, Cheng-Yu Ku,Chia-Ming Fan, Pai-Chen G A double iteration process for solving the nonlinear algebraic equations, especially for ill-posed nonlinear algebraic equations, J. Comput. Model. Eng. Sci. 99(2) (2014) 123–149.
[22] Wolfersdorf, L.V. Autoconvolution equations and special functions, In-tegral Transforms Spec. Funct., 19 (2008) 677–686.
[23] Wolfersdorf, L.V. Einige Klassen quadratischer Integralgleichungen [Some classes of quadratic integral equations], Sitz.ber. Sachs. Akad. Wiss. Leipz. Math.-Nat.wiss. Kl. 2000.
[24] Wolfersdorf, L.V. Auto convolution equations and special functions II, Integral Transforms Spec. Funct., 21(4) (2010) 295–306.
[25] Ziyaee, F. and Tari, A. Regularization method for the two-dimensional Fredholm integral equations of the first kind, Int. J. Nonlinear Sci., 18(2014) 189–194.
[26] Zhang, Y., Forssen, P., Fornstedt, T., Gulliksson M. and Dai X. An adap-tive regularization algorithm for recovering the rate constant distribution from biosensor data, Inverse Probl. Sci. Eng., 26 (2018) 1464–1489.
[27] Zhang, R., Liang, H. and Brunner, H. Analysis of collocation methods for generalized autoconvolution Volterra integral equations, SIAM J. Numer. Anal., Vol. 54 (2) (2016) 899–920.
[28] Zhang, Y., Lukyanenko, D. and Yagola, A. Using Lagrange principle for solving two-dimensional integral equation with a positive kernel, Inverse Probl. Sci. Eng., 24(5) (2016) 811–831.
[29] Zhang, Y., Lukyanenko, D. and Yagola, A. An optimal regularization method for convolution equations on the sourcewise represented set, J Inverse Ill-Pose P., 23(5) (2016) 465–475.
[30] Zhang. Y., Gulliksson, M., Hernandez, B.V. and Schaffernicht, E. Re-constructing gas distribution maps via an adaptive sparse regularization algorithm, Inverse Probl. Sci. Eng,. 24(7) (2016) 1186–1204.
Send comment about this article