1. Babolian, E. and Shahsawaran, A. Numerical solution of non-linear fredholm integral equations of the second kind using haar wavelets, J. Comput. Appl. Math. 225(2009) 87-95.
2. Cattani, C. Haar wavelet splines, J. Interdisciplinary Math. 4(2001) 35-47.
3. Chen, C.F. and Hsiao, C.H. Haar wavelet method for solving lumped and distributed-parameter systems, IEEE Proc.: Part D, 144(1) (1997) 87-94.
4. Haar, A. Zur theorie der orthogonalen Funktionsysteme, Math. Annal. 69(1910) 331-371.
5. Hariharan, G. and Kannan, K. An overview of Haar wavelet method for solving differential and integral equation, World Applied Sciences Journal 23(12) (2013) 1-14.
6. Hsiao, C.H. Wavelet approach to time-varying functional differential equations, Int. J. Computer Math. 87(3) (2008) 528-540.
7. Kouchi, M.R., Khosravi, M. and Bahmani, J. A numerical solution of Homogengous and Inhomogeneous Harmonic Differential equation with Haar wavelet, Int. J. Contemp. Math. Sciences 6(41) (2011) 2009-2018.
8. Lepik, U. Numerical solution of differential equations using Haar wavelets, Math. Comput. Simulat. 68 (2005) 127-143.
9. Lepik, U. Application of Haar wavelet transform to solving integral and differential equation, Proc. Estonian Acad. Sci. Phys. Math. 56(1) (2007) 28-46.
10. Lepik, U. Haar wavelet method for higher order differential equations, Int. J. MAth. Comput. 1 (2008) 84-94.
11. Lepik, U. Haar wavelet method for solving stiff differential equations, Math. Modeling and Analysis 4 (2009) 467-489.
12. Lepik, U. Solution of optimal control problems via Haar wavelets, Int. J.
Pure. Appl. Math. 55 (2009) 81-94.
13. Ohkita, M. and Kobayashi, Y. An application of rationalized Haar functions to solution of linear differential equations, IEEE Trans. Circuit System 9 (2003) 853-862.
14. Rama, B.B. and Dukkipati, V. Advanced dynamics, Alpha Science, Pangbourne, 2001.
15. Razzaghi, M. and Ordokhani,Y. An application of rationalized Haar functions for variational problems, Appl. MAth. Comput. 122 (2001) 353-364.
16. Saeed, U. and Rehman, M.U. Haar wavelet operational matrix method for fractional oscillation equations, International Journal of Mathematics and Mathematical Sciences, (2014) 1-8.
17. Simmons, G.F. Differential equations with applications and historical notes, Mcgraw-Hill, London. 1972.
18. Sunmonu, A. Implementation of wavelet solution to second order differential equations with maple, Applied Mathematical Sciences 6(127) (2012) 6311-6326.
19. Thomsen, J.J. Vibrations and stability order and chaos, Mc-graw-Hill, London, 1997.
Send comment about this article