1. Barfeie, M., soheili, A.R. and Arab Ameri, M. Application of variational mesh generation approach for selection of centers in radial basis functions collocation method, Eng. Anal. Bound. Elem., 37(2013) 1567-1575.
2. Boyd, J.P. and Gildersleeve, K.W. Numerical experiments on the condition number of the interpolation matrices for radial basis functions, Appl. Numer. Math., 61(2011) 443-459.
3. Brenan, K.E., Campbell, S.L. and Petzold, L. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North Holland, New York (1989).
4. Buhmann, M.D. Radial Basis Functions: Theory and Implementations, Cambridge University Press. (2003).
5. Driscoll, T.A. and Heryudono, A.R.H. Adaptive residual subsampling methods for radial basis function interpolation and collocation problems, Comput. Math. Appl., 53(2007) 927-939.
6. Fasshauer, G.E. Meshfree Approximation Methods with MATLAB,World Scientific Publishers. (2007).
7. Fletcher, C.A.J. Burgers' Equation: a Model for all Reasons, Numerical Solutions of Partial Differential Equations (J. Noye, editor), New York, North-Holland Pub Co, 1982.
8. Franke, C. Scattered data interpolation: tests of some methods, Math. Comput., 38(1982) 181-200.
9. Hardy, R. Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968-1988, Comput. Math. Appl,19(1988), 163-208.
10. Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, Berlin Heidelberg New York Tokyo (1991).
11. Hon, Y.C. and Schaback, R. On unsymmetric collocation by radial basis functions, Appl. Math. Comput., 19 (2001) 177-186.
12. Marchi, S.D. On optimal center locations for radial basis function interpolation: computational aspects, Rend. Splines Radial Basis Functions and Applications, 61(3) (2003) 343-358.
13. Marchi, S.D., Schaback, R. and Wendland, H. Near-optimal dataindependent point locations for radial basis function interpolation, Adv. Comput. Math., 23(2005) 317-330.
14. Min, X., Wang, R.H., Zhang, J.H. and Fang, Q. A novel numericalscheme for solving Burgers' equation|, Appl. Math. Comput., 217(9) (2011), 4473-4482.
15. Rabier, P. and Rheinboldt, W. Theoretical and Numerical Analysis of Differential-Algebraic Equations, Handbook of Numerical Analysis, vol. VIII, edited by P.G. Ciarlet and J.L. Lions, Elsevier Science B.V. (2002).
16. Rippa, S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11(1999) 193-210.
17. Sanz-Serna, J. and Christie, I. A simple adaptive technique for nonlinear wave problems, J. Comput. Phys., 67(1986) 348-360.
18. Sarra, S.A. Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54(2005) 79-94.
19. Schaback, R. Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3(1995) 251-264.
20. Soheili, A.R., Kerayechian, A. and Davoodi, N. Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput., 219(2012) 3486-3495.
21. Tsai, C.H., Kolibal, J. and Li, M. The golden section search algorithm for finding a good shape parameter for meshless collocation methods, Eng. Anal. Bound. Elem., 34(2010) 738-740.
22. Wand, J.G. and Liu, G.R. On the optimal shape parameters of radial basis functions used for 2-d meshless methods, Comput. Meth. Appl. Mech. Eng., 191(2002) 2611-2630.
23. Yoon, J. Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal., 33(2001) 946-958.
Send comment about this article