Computation of eigenvalues of fractional Sturm–Liouville problems

E.M. Maralani, F.D. Saei*, A.A.J. Akbarfam and K. Ghanbari

Abstract

We consider the eigenvalues of the fractional-order Sturm–Liouville equation of the form

\[-cD_0^\alpha \circ D_0^\alpha y(t) + q(t)y(t) = \lambda y(t), \quad 0 < \alpha \leq 1, \quad t \in [0, 1],\]

with Dirichlet boundary conditions

\[I_{0+}^{1-\alpha} y(t)|_{t=0} = 0 \quad \text{and} \quad I_{0+}^{1-\alpha} y(t)|_{t=1} = 0,\]

where \(q \in L^2(0, 1)\) is a real-valued potential function. The method is used based on Picard’s iteration procedure. We show that the eigenvalues are obtained from the zeros of the Mittag-Leffler function and its derivatives.

AMS subject classifications (2020): 26A33, 34A08, 34B09.

Keywords: Fractional Sturm–Liouville; Fractional calculus; Iterative methods; Eigenvalues.

1 Introduction

Fractional Sturm–Liouville Problems (FSLPs) are generalizations of the classical Sturm–Liouville Problems in which the ordinary derivatives are replaced

*Corresponding author
Received 12 January 2020; revised 2 September 2020; accepted 29 December 2020
Elnaz Massah Maralani
Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran. e-mail: stu.massah.elnaz@iaut.ac.ir
Farhad Dastmalchi Saei
Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran. e-mail: dastmalchi@iaut.ac.ir
Ali Asghar Jodagheee Akbarfam
University of Tabriz, Tabriz, Iran. e-mail: akbarfam@tabrizu.ac.ir
Kazem Ghanbari
Sahand university of Technology, Tabriz, Iran. e-mail: kghanbari@sut.ac.ir

117
by fractional derivatives or derivatives of fractional order. As an introduction, the interested reader may wish to consult the great variety of works on the subject, starting with books such as [14, 20, 23]. Several authors have considered the numerical FSILP; for example Al-Mdallal [2, 24] applied the Adomian decomposition method for solving fractional Sturm–Liouville problems. Abbaspand and Shirzadi [1] applied the homotopy analysis method for solving fractional Sturm–Liouville problems. Also in [8], the eigenvalue problems for the fractional ordinary differential equations have been investigated with different classes of boundary conditions including the Dirichlet, Neumann, and so on. They explained that choosing $\alpha = 2$ leads to the classical ones of the second-order differential equations. When the order α satisfies $1 < \alpha < 2$, the eigenvalues can be finitely many; see [9, 22]. It has been applied to many fields in science and engineering, such as viscoelasticity, anomalous diffusion, fluid mechanics, biology, chemistry, acoustics, control theory, and so on. In the applications mentioned above, a class of integro-differential equations with singularities, fractional differential equations have been involved; see [11, 16, 15, 17, 21, 18, 20, 5]. In [25], the authors have considered a regular fractional Sturm–Liouville problem (FSLP) of two kinds RFSILP-I and RFSILP-II of order $\nu \in (0,2)$ with the fractional differential operators both of Riemann–Liouville and Caputo type, of the same fractional-order $\mu = \nu/2 \in (0,1)$. It was proved that the regular boundary-value problems RFSILP-I & -II are indeed asymptotic cases for the singular counterparts SFSILP-I & -II. The inverse Laplace transform method for obtaining analytical solutions of the FSLPs and eigenvalues has been investigated in [10]. The reproducing kernel method has also been used to calculate the eigenvalues of the FSLPs. Dehgan and Mingarelli [6, 7] have investigated the general solution of three- or two-term fractional differential equations of mixed Caputo/Riemann–Liouville type in the case of Dirichlet boundary conditions. From a numerical viewpoint, we also refer the reader for fractional differential equations to [2, 3, 4, 12, 24]. Particularly, the boundary value problem is of the form

$$
-cD_0^\alpha \circ D_{0+}^\alpha y(t) + q(t)y(t) = \lambda y(t), \quad 0 < \alpha \leq 1, \quad t \in [0,1],
$$

$$
I_{0+}^{1-\alpha}y(t)|_{t=0} = 0, \quad \text{and} \quad I_{0+}^{1-\alpha}y(t)|_{t=1} = 0.
$$

For each $1/2 < \alpha < 1$, it is proved that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grow without bound as $\alpha \to 1^-$. Also, they expressed asymptotically behavior of the eigenvalues as a function of α in the following form:

$$
\lambda_n(\alpha) \sim \left(\frac{n\pi}{\sin\left(\frac{\pi}{2\alpha}\right)}\right)^{2\alpha}, \quad \alpha \to 1^-.
$$

This corresponds exactly with the well-known classical asymptotic estimate $\lambda_n \to n^2\pi^2$ as $n \to \infty$; see [6, 7]. The remaining structure of this paper is organized as follows: In the next section, we review the Mittag-Leffler function
and Laplace transform of the Riemann–Liouville and the Caputo fractional derivatives. In section 3, we discuss the zeros of the iterative method with two examples. In section 4, we discuss the analysis of the iterative method. The last section includes our conclusions.

2 Preliminaries

We recall some definitions in fractional calculus. We refer the reader to [6] for further details.

Definition 1. The left and the right Riemann–Liouville fractional integrals I^α_{a+} and I^α_{b-} of order $\alpha \in \mathbb{R}^+$ are defined by

$$I^\alpha_{a+} f(t) := \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) \, ds, \quad (a, b],$$

and

$$I^\alpha_{b-} f(t) := \frac{1}{\Gamma(\alpha)} \int_t^b (s-t)^{\alpha-1} f(s) \, ds, \quad [a, b),$$

respectively.

Here $\Gamma(\alpha)$ denotes Euler's gamma function. The following property is easily verified.

Lemma 1. For a constant C, we have $I^\alpha_{a+} C = \frac{(t-a)^\alpha}{\Gamma(\alpha+1)} \cdot C$.

Definition 2. The left and the right Caputo fractional derivatives $^cD^\alpha_{a+}$ and $^cD^\alpha_{b-}$ are defined by

$$^cD^\alpha_{a+} f(t) := I^{n-\alpha}_{a+} \circ D^n f(t) = \frac{1}{\Gamma(n-\alpha)} \int_a^t (t-s)^{n-\alpha-1} f^{(n)}(s) \, ds, \quad t > a,$$

and for $t < b$,

$$^cD^\alpha_{b-} f(t) := (-1)^n I^{n-\alpha}_{b-} \circ D^n f(t) = \frac{(-1)^n}{\Gamma(n-\alpha)} \int_t^b (s-t)^{\alpha-n+1} f^{(n)}(s) \, ds,$$

respectively, where f is sufficiently differentiable and $n - 1 \leq \alpha < n$.

Definition 3. The left and the right Riemann–Liouville fractional derivatives D^α_{a+} and D^α_{b-} are defined by

$$D^\alpha_{a+} f(t) := D^n \circ I^{n-\alpha}_{a+} f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_a^t (t-s)^{n-\alpha-1} f(s) \, ds, \quad t > a,$$

(5)
and for $t < b$,
\[
D_b^\alpha f(t) := (-1)^n D^n \circ I_b^{n-\alpha} f(t) = \frac{(-1)^n}{\Gamma(n - \alpha)} \frac{d^n}{dt^n} \int_t^b (s-t)^{n-\alpha-1} f(s) ds, \quad (6)
\]
respectively, where f is sufficiently differentiable and $n - 1 \leq \alpha < n$.

2.1 The Mittag-Leffler function

The function $E_\alpha(z)$ is defined by
\[
E_\alpha(z) := \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)} \quad (z \in \mathbb{C}, \ R(\alpha) > 0), \quad (7)
\]
which was introduced by Mittag-Leffler [20]. In particular, when $\alpha = 1$ and $\alpha = 2$, we have
\[
E_1(z) = e^z, \quad E_2(z) = \cosh(\sqrt{z}).
\]

The generalized Mittag-Leffler function $E_{\alpha,\beta}(z)$ is defined by
\[
E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \quad (z, \theta \in \mathbb{C}, \ R(\alpha) > 0), \quad (8)
\]
of course, when $\beta = 1$, $E_{\alpha,\beta}(z)$ coincides with the Mittag-Leffler function (18):
\[
E_{\alpha,1}(z) = E_\alpha(z).
\]

Two other particular cases of (3) are as follows:
\[
E_{1,2}(z) = \frac{e^z - 1}{z}, \quad E_{2,2}(z) = \frac{\sinh(\sqrt{z})}{\sqrt{z}}.
\]

Further properties of this special function may be found in [11].

Theorem 1 (see [22]). If $\alpha < 2$, β is an arbitrary real number, μ is such that
\[
\frac{\pi \mu}{2} < \mu < \min\{\pi, \pi \alpha\}, \quad \text{and} \quad c \text{ is a real constant}, \quad \text{then}
\]
\[
|E_{\alpha,\beta}(z)| \leq \frac{c}{1 + |z|} \quad (\mu \leq |\arg(z)| \leq \pi), \quad |z| \geq 0, \quad z \in \mathbb{C}.
\]
2.2 Laplace transform

Definition 4 (see [22, 19]). The Laplace transform of a function $f(t)$ defined for all real numbers $t \geq 0$, t stands for the time, is the function $F(s)$ that is a unilateral transform defined by

$$F(s) = \mathcal{L}\{f(t)\} := \int_0^\infty e^{-st}f(t)dt,$$

where s is the frequency parameter.

Definition 5 (see [22, 19]). The convolution of $f(t)$ and $g(t)$ supported on only $[0, \infty)$ is defined by

$$(f * g)(t) = \int_0^t f(s)g(t-s)ds, \quad f, g : [0, \infty) \to \mathbb{R}.$$

Property 1 (see [22]). The Laplace transform of the convolution of $f(t)$ and $g(t)$ is given by following relation:

$$\mathcal{L}\{(f * g)(t)\} = \mathcal{L}\{f(t)\} \times \mathcal{L}\{g(t)\}.$$

Property 2 (see [6, 22]). The Laplace transform of the derivatives of the Mittag-Leffler function reads as follows:

$$\int_0^\infty e^{-st}t^{\alpha k + \beta - 1}E^{(k)}_{\alpha,\beta}(\pm \lambda t^\alpha)dt = \frac{k! s^{\alpha-\beta}}{(s^\alpha \mp \lambda)^{k+\gamma}}, \quad (Re(p) > |a|^\frac{\gamma}{\lambda}).$$

Property 3 (see [13, 22]). The Laplace transform of the Riemann–Liouville fractional derivative is obtained as

$$(\mathcal{L}_0 D^\alpha_t y)(s) = s^\alpha(\mathcal{L}y)(s) - \sum_{k=0}^{n-1} s^{n-k-1}D^k(aI_t^{n-\alpha}y)(0), \quad n - 1 < \alpha \leq n, n \in \mathbb{N}.$$

If $0 < \alpha \leq 1$, then $(\mathcal{L}_0 D^\alpha_t y)(s) = s^\alpha(\mathcal{L}y)(s) - (aI_t^{n-\alpha}y)(0)$.

Property 4 (see [13, 22]). The Laplace transform of the Caputo fractional derivative is obtained as

$$(\mathcal{L}_0^\alpha D^\alpha_t y)(s) = s^\alpha(\mathcal{L}y)(s) - \sum_{k=0}^{n-1} s^{\alpha-k-1}(D^k y)(0), \quad n - 1 < \alpha \leq n, n \in \mathbb{N}.$$

If $0 < \alpha \leq 1$, then $(\mathcal{L}_0^\alpha D^\alpha_t y)(s) = s^\alpha(\mathcal{L}y)(s) - s^{\alpha-1}y(0)$.
3 Iterative method

If we take the Laplace transformation of equation (1), then we get the following equation:
\[
\mathcal{L}\{y(t)\} = \frac{s^\alpha}{\lambda + s^{2\alpha}} \int_{0+}^{\alpha} y(t) \big|_{t=0} + \frac{s^{\alpha-1}}{\lambda + s^{2\alpha}} D_0^\alpha y(t) \big|_{t=0} + \frac{1}{\lambda + s^{2\alpha}} \mathcal{L}\{h(t)\},
\]
where \(h(t) := q(t)y(t)\). We use the inverse Laplace transform
\[
y(t) = c_1 t^{\alpha-1} E_{2\alpha,2}(\lambda t^{2\alpha}) + c_2 t^{\alpha} E_{2\alpha,\alpha+1}(\lambda t^{2\alpha}) + t^{2\alpha-1} E_{2\alpha,2\alpha}(\lambda t^{2\alpha}) * h(t),
\]
in which, specifying the constants in (2) by setting, without loss of generality, \(c_1 = 0\) and \(c_2 = 1\) are given constants and \(*\) is the convolution symbol. We consider the following iterative method:
\[
y_m(t) = t^\alpha E_{2\alpha,\alpha+1}(\lambda t^{2\alpha}) + \int_0^t (t-s)^{2\alpha-1} E_{2\alpha,2\alpha}(\lambda (t-s)^{2\alpha}) q(s) y_{m-1}(s) ds.
\]

Example 1. For simplicity, first we assume that \(q(s) = 1\) and that
\[
y_0(t) = t^\alpha E_{2\alpha,\alpha+1}(\lambda t^{2\alpha}).
\]

Then we get
\[
y_1(t) = t^\alpha E_{2\alpha,\alpha+1}(\lambda t^{2\alpha}) + \int_0^t (t-s)^{2\alpha-1} E_{2\alpha,2\alpha}(\lambda (t-s)^{2\alpha}) s^\alpha E_{2\alpha,\alpha+1}(\lambda s^{2\alpha}) ds.
\]

To calculate the integral term, we apply the following method:
\[
\mathcal{L}^{-1}\{\int_0^t (t-s)^{2\alpha-1} E_{2\alpha,2\alpha}(\lambda (t-s)^{2\alpha}) s^\alpha E_{2\alpha,\alpha+1}(\lambda s^{2\alpha}) ds\}
\]
\[
= \frac{1}{1!} t^{3\alpha} E_{2\alpha,\alpha+1}^{(1)}(\lambda t^{2\alpha}).
\]

Thus
\[
y_1(t) = t^\alpha E_{2\alpha,\alpha+1}(\lambda t^{2\alpha}) + \frac{1}{1!} t^{3\alpha} E_{2\alpha,\alpha+1}^{(1)}(\lambda t^{2\alpha}).
\]

Now, we calculate \(y_2(t)\) as follows:
\[
y_2(t) = y_1(t) + \frac{1}{2!} t^{5\alpha} E_{2\alpha,\alpha+1}^{(2)}(\lambda t^{2\alpha}),
\]
as the same way, we get
Computation of eigenvalues of fractional Sturm–Liouville problems

\[y_3(t) = y_2(t) + \frac{1}{3!} t^{7\alpha} E_{2\alpha, \alpha+1}^{(3)}(-\lambda t^{2\alpha}). \]

Finally, after the iteration, we have the following relation:

\[y_m(t) = \sum_{k=0}^{m+1} \frac{1}{k!} t^{(2k+1)\alpha} E_{2\alpha, \alpha+1}^{(k)}(-\lambda t^{2\alpha}). \]
(10)

By choosing some terms from the approximate solution and calculating their zeros, the same results are obtained from [7] as follows:

\[y_3(t) = t^{\alpha} E_{2\alpha, \alpha+1}(-\lambda t^{2\alpha}) + \frac{1}{1!} t^{3\alpha} E_{2\alpha, \alpha+1}^{(1)}(-\lambda t^{2\alpha}) \]
\[+ \frac{1}{2!} t^{5\alpha} E_{2\alpha, \alpha+1}^{(2)}(-\lambda t^{2\alpha}) + \frac{1}{3!} t^{7\alpha} E_{2\alpha, \alpha+1}^{(3)}(-\lambda t^{2\alpha}). \]

For example, if we take three terms with the boundary conditions

\[I_0^{1-\alpha} y(t)|_{t=1} = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} y(s) ds = 0, \]
then we get

\[I_0^{1-\alpha} y_3(t)|_{t=1} = 2 \left\{ \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} s^{2\alpha} E_{2\alpha, \alpha+1}^{(3)}(-\lambda s^{2\alpha}) ds \right\} \]
\[+ \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \frac{1}{1!} s^{3\alpha} E_{2\alpha, \alpha+1}^{(1)}(-\lambda s^{2\alpha}) ds \]
\[+ \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \frac{1}{2!} s^{5\alpha} E_{2\alpha, \alpha+1}^{(2)}(-\lambda s^{2\alpha}) ds \]
\[+ \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \frac{1}{3!} s^{7\alpha} E_{2\alpha, \alpha+1}^{(3)}(-\lambda s^{2\alpha}) ds \} \]
\[|_{t=1} = 0. \]

Using the inverse Laplace transform implies

\[I_0^{1-\alpha} y_3(t)|_{t=1} = 2 \left\{ \frac{s^{2\alpha-2}}{(s^{2\alpha} + \lambda)^{1+1}} \right\} + 2 \left\{ \frac{s^{2\alpha-2}}{(s^{2\alpha} + \lambda)^{1+1}} \right\} \]
\[+ \frac{1}{2} \left\{ \frac{s^{2\alpha-2}}{(s^{2\alpha} + \lambda)^{2+1}} \right\} + \frac{1}{3!} \left\{ \frac{s^{2\alpha-2}}{(s^{2\alpha} + \lambda)^{3+1}} \right\} = 0 \]
\[= \left\{ t E_{2\alpha, \alpha+1}^{(3)}(-\lambda t^{2\alpha}) + t^{2\alpha+1} E_{2\alpha, \alpha+1}^{(1)}(-\lambda t^{2\alpha}) + t^{4\alpha+1} E_{2\alpha, \alpha+1}^{(2)}(-\lambda t^{2\alpha}) \right\} |_{t=1} = 0. \]

Therefore, the zeros of the above relation yield eigenvalues.

For the case of \(q(s) = 0 \), we refer the reader to [6, 7].
Table 1: The eigenvalues λ_n of the FSLP of Example 1

<table>
<thead>
<tr>
<th>k</th>
<th>n</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>10.7568699</td>
<td>10.55992405</td>
<td>10.66410923</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.7867886</td>
<td>10.8633576</td>
<td>10.94942560</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.8664524</td>
<td>10.992405</td>
<td>10.992405</td>
</tr>
</tbody>
</table>

$\alpha = 0.98$ $\lambda_1 = 10.7867886$, $\lambda_2 = 10.8633576$, $\lambda_3 = 10.94942560$

Figure 1: The curves of eigenfunctions, $k = 10$ for $n = 1$ (solid line), $n = 2$ (dash dot line), $n = 3$ (dash line), where $\alpha = 0.98$, $\lambda_1 = 10.7867886$, $\lambda_2 = 38.01570185$, and $\lambda_3 = 77.14409122$ for Example 1.

Figure 2: The curves of eigenfunctions, $k = 10$ for $n = 1$ (solid line), $n = 2$ (dash dot line), $n = 3$ (dash line), where $\alpha = 0.99$, $\lambda_1 = 10.8633576$, $\lambda_2 = 39.23145940$, and $\lambda_3 = 82.33647923$ for Example 1.
Remark 1. Note that as α approaches 1, one can see that the eigenvalues satisfy $\lambda_n = n^2\pi^2 + 1$. This shows that our results are a generalization of the classical ones.

Example 2. Now, we assume $q(s) = s^\beta$, and we have the following iterative method, analogous to the previous computation:

$$y_m(t) = t^\alpha E_{2\alpha,\alpha+1}(-\lambda t^{2\alpha}) + \int_0^t (t-s)^{2\alpha-1} E_{2\alpha,2\alpha}(-\lambda(t-s)^{2\alpha})q(s)y_{m-1}(s)ds.$$

We define

$$y_1(t) = t^\alpha E_{2\alpha,\alpha+1}(-\lambda t^{2\alpha}) + \int_0^t (t-s)^{2\alpha-1} E_{2\alpha,2\alpha}(-\lambda(t-s)^{2\alpha}) \cdot s^{\alpha+\beta} E_{2\alpha,\alpha+1}(-\lambda s^{2\alpha})ds,$$

and again to calculate the integral term, we apply the following method:

$$L^{-1}\left(L\{t^{2\alpha-1} E_{2\alpha,2\alpha}(-\lambda t^{2\alpha})\} \cdot L\{t^{\alpha+\beta} E_{2\alpha,\alpha+1}(-\lambda t^{2\alpha})\}\right)$$

$$= \sum_{k_1=0}^\infty (-\lambda)^{k_1} \cdot \frac{\Gamma((2k_1+1)\alpha + \beta + 1)}{\Gamma((2k_1+1)\alpha + 1)} \cdot t^{((2k_1+3)\alpha+\beta) E_{2\alpha,(2k_1+3)\alpha+\beta+1}(-\lambda t^{2\alpha})}.$$

Thus

$$y_1(t) = y_0(t) + \sum_{k_1=0}^\infty (-\lambda)^{k_1} \cdot \frac{\Gamma((2k_1+1)\alpha + \beta + 1)}{\Gamma((2k_1+1)\alpha + 1)} \times t^{((2k_1+3)\alpha+\beta) E_{2\alpha,(2k_1+3)\alpha+\beta+1}(-\lambda t^{2\alpha})},$$

now, we calculate $y_2(t)$ as follows:

$$y_2(t) = y_1(t) + \sum_{k_1=0}^\infty \sum_{k_2=0}^\infty (-\lambda)^{k_1+k_2}$$

$$\times \frac{\Gamma((2k_1+1)\alpha + \beta + 1)}{\Gamma((2k_1+1)\alpha + 1)} \cdot \frac{\Gamma((2k_2+2k_1+3)\alpha + 2\beta + 1)}{\Gamma((2k_2+2k_1+3)\alpha + \beta + 1)}$$

$$\times t^{((2k_1+3)\alpha+\beta) E_{2\alpha,(2k_1+3)\alpha+\beta+1}(-\lambda t^{2\alpha})},$$

similarly, we have
\[y_3(t) = y_2(t) \]
\[+ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} (-\lambda)^{k_1+k_2+k_3} \frac{\Gamma((2k_1+1)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+1)} \]
\[\times \frac{\Gamma((2k_2+2k_1+3)\alpha+2\beta+1)}{\Gamma((2k_2+2k_1+5)\alpha+3\beta+1)} \]
\[\times \Gamma((2k_3+2k_2+2k_1+7)\alpha+3\beta+1)(-\lambda t^{2\alpha}). \]

Finally, we get the following relation for \(y_m(t) \):

\[y_m(t) = y_{m-1}(t) + \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots \sum_{k_m=0}^{\infty} (-\lambda)^{k_1+k_2+\ldots+k_m} \frac{A}{B} \]
\[\times t^{(2k_m+2k_m-1+\ldots+2k_1+(2m-1))\alpha+m\beta} \]
\[\times E_{2\alpha,(2k_m+2k_m-1+\ldots+2k_1+(2m-1))\alpha+m\beta+1}(-\lambda t^{2\alpha}), \]

where

\[A = \Gamma((2k_1+1)\alpha+\beta+1)\Gamma((2k_2+2k_1+3)\alpha+2\beta+1) \times \ldots \]
\[\times \Gamma((2k_m+2k_m-1+\ldots+2k_1+(2m-1))\alpha+m\beta+1), \]

and

\[B = \Gamma((2k_1+1)\alpha+1)\Gamma((2k_2+2k_1+3)\alpha+1) \times \ldots \]
\[\times \Gamma((2k_m+2k_m-1+\ldots+2k_1+(2m-1))\alpha+(m-1)\beta+1). \]

Now, in order to obtain eigenvalues, by choosing three terms from (37) and imposing the following boundary condition, we have

\[I_{1+}^{1-\alpha} y_3(t)|_{t=1} \]
\[= \mathcal{L}^{-1}\left\{ \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{\alpha-\alpha} E_{2\alpha,\alpha+1}(-\lambda s^{2\alpha}) ds \right\} \]

\[+ \sum_{k_1=0}^{\infty} (-\lambda)^{k_1} \frac{\Gamma((2k_1+1)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+1)} \]
\[\times \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{\alpha} s^{(2k_1+3)\alpha+\beta} E_{2\alpha,(2k_1+3)\alpha+\beta+1}(-\lambda s^{2\alpha}) ds \]

\[+ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} (-\lambda)^{k_1+k_2} \frac{\Gamma((2k_1+1)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+1)} \]
\[\times \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} s^{(2k_2+2k_1+5)\alpha+2\beta} E_{2\alpha,(2k_2+2k_1+5)\alpha+2\beta+1}(-\lambda s^{2\alpha}) ds \]
Computation of eigenvalues of fractional Sturm–Liouville problems

\[
+ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} (-\lambda)^{k_1+k_2+k_3} \frac{\Gamma((2k_1+1)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+1)} \\
\times \frac{\Gamma((2k_2+2k_1+3)\alpha+2\beta+1)}{\Gamma((2k_2+2k_1+3)\alpha+\beta+1)} \frac{\Gamma((2k_3+2k_2+2k_1+5)\alpha+3\beta+1)}{\Gamma((2k_3+2k_2+2k_1+5)\alpha+2\beta+1)} \\
\times \frac{1}{\Gamma(1-\alpha)} \int_0^1 (t-s)^{-\alpha} e^{(2k_3+2k_2+2k_1+7)\alpha+3\beta} \\
\times E_{2\alpha,(2k_3+2k_2+2k_1+7)\alpha+3\beta+1}\left((-\lambda t^{2\alpha}) ds \right)_{t=1} = 0. \tag{13}
\]

Now, using the inverse Laplace transform, we have

\[
I_{0}^{1-\alpha} y_{3}(t) |_{t=1} = \text{t} E_{\alpha,2}\left((-\lambda t^{2\alpha}) + \sum_{k_1=0}^{\infty} (-\lambda)^{k_1} \frac{\Gamma((2k_1+1)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+1)} \\
\times E_{\alpha,2}\left((-\lambda t^{2\alpha}) \frac{\Gamma((2k_1+2)\alpha+\beta+1)}{\Gamma((2k_1+1)\alpha+\beta+1)} \frac{\Gamma((2k_2+2k_1+3)\alpha+2\beta+1)}{\Gamma((2k_2+2k_1+3)\alpha+\beta+1)} \\
\times E_{\alpha,2}\left((-\lambda t^{2\alpha}) \frac{\Gamma((2k_3+2k_2+2k_1+5)\alpha+3\beta+1)}{\Gamma((2k_3+2k_2+2k_1+5)\alpha+2\beta+1)} \frac{\Gamma((2k_3+2k_2+2k_1+7)\alpha+3\beta+1)}{\Gamma((2k_3+2k_2+2k_1+7)\alpha+3\beta+1)} \right)_{t=1} = 0.
\]

Therefore, solving the above relation with respect to \(\lambda \) yields eigenvalues.

Table 2: The eigenvalues \(\lambda_n \) of the FSLP for Example 2

<table>
<thead>
<tr>
<th>(k_1, k_2, k_3 = 5)</th>
<th>(k_1, k_2, k_3 = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1)</td>
<td>(\lambda_2)</td>
</tr>
<tr>
<td>47.56007387</td>
<td>32.43310896</td>
</tr>
<tr>
<td>1126.335623</td>
<td>44.07433976</td>
</tr>
<tr>
<td>2383.852442</td>
<td>60.98311732</td>
</tr>
<tr>
<td>4084.54179</td>
<td>1672.006629</td>
</tr>
<tr>
<td>29.99913622</td>
<td>3669.500947</td>
</tr>
<tr>
<td>6468.168446</td>
<td>10281.17818</td>
</tr>
<tr>
<td>44.9511154</td>
<td>62.05287730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\lambda_3)</th>
<th>(\lambda_4)</th>
<th>(\lambda_5)</th>
<th>(\lambda_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.86376328</td>
<td>30.94976951</td>
<td>35.18628831</td>
<td>37.49382726</td>
<td>38.71666129</td>
<td>39.97755111</td>
</tr>
<tr>
<td>38.80996010</td>
<td>51.04646579</td>
<td>66.84154959</td>
<td>76.33005616</td>
<td>81.52855664</td>
<td>87.05489991</td>
</tr>
</tbody>
</table>
Figure 3: The curves of eigenfunctions, \(k_1, k_2, k_3 = 5\) for \(n = 1\) (solid line), \(n = 2\) (dash dot line), \(n = 3\) (dash line), where \(\alpha = 0.98\), \(\lambda_1 = 10.19660718\), \(\lambda_2 = 68.65397481\), and \(\lambda_3 = 90.47082662\) for Example 2.

Figure 4: The curves of eigenfunctions, \(k_1, k_2, k_3 = 5\) for \(n = 1\) (solid line), \(n = 2\) (dash dot line), \(n = 3\) (dash line), where \(\alpha = 0.99\), \(\lambda_1 = 10.27791426\), \(\lambda_2 = 73.15018892\), and \(\lambda_3 = 96.86784919\) for Example 2.

4 Analysis of the iterative method

Lemma 2. The \(n\)-fold series in relation (37) is convergent for \(\alpha = 1\), \(\beta \in \mathbb{N}\), and \(|t| < \frac{1}{\sqrt{\lambda}}\).

Proof. It is sufficient to show that the double series in relation (11) is convergent. By Theorem 1, we have

\[
|y_2(t) - y_1(t)| \leq \frac{\epsilon}{1 + |\lambda|^2} \sum_{k_1=0}^{\infty} |\lambda|^{k_1} \frac{(2k_1+1+\beta)!}{((2k_1+1)!)} \times \sum_{k_2=0}^{\infty} |\lambda|^{k_2} \frac{(2k_2 + 2k_1 + 3 + 2\beta)!}{((2k_2 + 2k_1 + 3)! + \beta)!} t^{2k_2+2k_1+3+2\beta}. \tag{14}
\]
Since \(\lim_{k_2 \to \infty} \sqrt{k_2} \frac{(2k_2 + 2k_1 + 3 + 2\beta)! |\lambda|^{k_2}}{((2k_2 + 2k_1 + 3) + \beta)!} = |\lambda| \), by the basic root test of convergence of nonnegative series, we conclude that for \(|t| < \frac{1}{\sqrt{|\lambda|}} \), the series

\[
\sum_{k_2=0}^{\infty} |\lambda|^{k_2} \frac{(2k_2 + 2k_1 + 3 + 2\beta)!}{(2k_2 + 2k_1 + 3 + \beta)!} t^{2k_2 + 2k_1 + 5 + 2\beta}
\]

is absolutely convergent. Moreover, it is uniformly convergent on any compact subset of the interval \((-\frac{1}{\sqrt{|\lambda|}}, \frac{1}{\sqrt{|\lambda|}}) \).

On the other hand, the series \(\sum_{k_2=0}^{\infty} |\lambda|^{k_2} t^{2k_2 + 2k_1 + 5 + 2\beta} \) is absolutely convergent on the interval \((-\frac{1}{\sqrt{|\lambda|}}, \frac{1}{\sqrt{|\lambda|}}) \) and is uniformly convergent on any compact subset of the interval \((-\frac{1}{\sqrt{|\lambda|}}, \frac{1}{\sqrt{|\lambda|}}) \). So we can take derivative of it on this interval, term by term, for \(\beta \) times and get

\[
\sum_{k_2=0}^{\infty} ((2k_2 + 2k_1 + 3) + \beta + 1)(2k_2 + 2k_1 + 3 + \beta + 2) \\
\ldots (2k_2 + 2k_1 + 3 + 2\beta)|\lambda|^{k_2} t^{2k_2 + 2k_1 + 5 + 2\beta}
\]

\[
= t^\beta \left(\sum_{k_2=0}^{\infty} |\lambda|^{k_2} t^{2k_2 + 2k_1 + 5 + 2\beta} \right)^{(\beta)}
\]

\[
= t^\beta \left(t^{2k_1 + 5 + 2\beta} \sum_{k_2=0}^{\infty} (|\lambda| t^2)^{k_2} \right)^{(\beta)}
\]

\[
= t^\beta \left(\frac{t^{2k_1 + 5 + 2\beta}}{1 - |\lambda| t^2} \right)^{(\beta)}.
\]

Now, using (14), we obtain

\[
|y_2(t) - y_1(t)| \leq c \frac{t^\beta}{1 + |\lambda| t^2} \sum_{k_1=0}^{\infty} |\lambda|^{k_1} \frac{(2k_1 + 1 + \beta)!}{[2k_1 + 1]!} \cdot t^\beta \left(\frac{t^{2k_1 + 5 + 2\beta}}{1 - |\lambda| t^2} \right)^{(\beta)}
\]

\[
= \frac{c t^\beta}{1 + |\lambda| t^2} \left(\sum_{k_1=0}^{\infty} |\lambda|^{k_1} \frac{(2k_1 + 1 + \beta)!}{[2k_1 + 1]!} \cdot t^{2k_1 + 5 + 2\beta} \right)^{(\beta)}
\]

\[
= \frac{c t^\beta}{1 + |\lambda| t^2} \left(\frac{t^{2\beta + 4}}{1 - |\lambda| t^2} \sum_{k_1=0}^{\infty} |\lambda|^{k_1} (2k_1 + 1 + \beta) \cdot (2k_1 + 1 + \beta) t^{2k_1+1} \right)^{(\beta)}
\]

\[
= \frac{c t^\beta}{1 + |\lambda| t^2} \left(\frac{t^{2\beta + 4}}{1 - |\lambda| t^2} \sum_{k_1=0}^{\infty} |\lambda|^{k_1} (2k_1 + 2) \cdots (2k_1 + 1 + \beta) t^{2k_1+1} \right)^{(\beta)}
\]
\[
\frac{c t^\beta}{1 + |\lambda| t^2} \left(\sum_{k_1=0}^{\infty} |\lambda|^{k_1} \left(t^{2k_1+2+\beta} \right)^{(\beta)} \right)
\]

Therefore, (14) is appeared to be the derivative of a function and hence is convergent.

It follows from the root test that \(\frac{1}{R} = \limsup_{k_2 \to \infty} \sqrt[k_2]{\frac{(2k_2+2k_1+3+2\beta)!|\lambda|^{k_2}}{(2k_2+2k_1+3)!|\lambda|^{k_2}}} = |\lambda| \). Hence

\[
C = \sum_{k_2=0}^{\infty} \left(\left((2k_2 + 2k_1 + 3) + \beta + 1 \right) \left((2k_2 + 2k_1 + 3) + \beta + 2 \right) \right)
\times \cdots \times \left((2k_2 + 2k_1 + 3) + 2\beta \right) |\lambda|^{k_2} t^{2k_2+2k_1+5+2\beta}
\]

\[
= \left(\sum_{k_2=0}^{\infty} \left(|\lambda|^{k_2} t^{2k_2+2k_1+5+2\beta} \right)^{(k)} \right),
\]

where \(k = (2k_2 + 2k_1 + 5) - [(2k_2 + 2k_1 + 3) + \beta - 2] \). Then

\[
C = \left(t^{2k_1+5+2\beta} \sum_{k_2=0}^{\infty} \left(|\lambda| t^2 \right)^{k_2} \right)^{(k)} = \left(\frac{t^{2k_1+5+2\beta} \sqrt[1]{t^{2k_1+5+2\beta}}}{1 - |\lambda| t^2} \right)^{(k)}.
\]

Noting that \(\left(\frac{t^{2k_1+5+2\beta} \sqrt[1]{t^{2k_1+5+2\beta}}}{1 - |\lambda| t^2} \right)^{(k)} \) is convergent for \(\alpha = 1 \) and \(\beta \in \mathbb{N} \), then

\[
\leq \frac{c}{1 + |\lambda| t^2} \left(\sum_{k_1=0}^{\infty} \left| \lambda \right|^{k_1} \left(\frac{(2k_1 + 1 + \beta)!}{(2k_1 + 1)!} \cdot \frac{t^{2k_1+5+2\beta} \sqrt[1]{t^{2k_1+5+2\beta}}}{1 - |\lambda| t^2} \right)^{(k)} \right)
\]

\[
\leq \frac{c}{1 + |\lambda| t^2} \left(\frac{t^{\beta+2} \sum_{k_1=0}^{\infty} \left((2k_1 + 1 + 1) \times \cdots \times (2k_1 + 1 + \beta) t^{2k_1+\beta+3} \right)^{(k)} \right)
\]

\[
\leq \frac{c}{1 + |\lambda| t^2} \left(\frac{t^{\beta+2} \sum_{k_1=0}^{\infty} \left(t^{\beta+3} \sum_{k_1=0}^{\infty} t^{2k_1(t)} \right)^{(k)} \right),
\]

where \(l = (2k_1 + \beta) - [(2k_1 + 3) + 1] \). We have
the proof is completed.

The reader can prove the convergence of triple series and so on in the same manner.

5 Conclusion

In this paper, we have considered the analytical and numerical solutions of the FSLPs and eigenvalue problems for the fractional differential equations with Dirichlet boundary conditions by using an iterative method. Moreover, we proved that the resulting series is convergent.

References

