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Abstract

We consider the maximum flow network interdiction problem. We provide
a new interpretation of the problem and define a concept called ”optimal
cut”. We propose a heuristic algorithm to obtain an approximated cut, and
we also obtain its error bound. Finally, we show that our heuristic is an
a-approximation algorithm for a class of networks. By implementing it on
three network types, we show the advantage of it over solving the model by
CPLEX.
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1 Introduction

In the maximum flow network interdiction problem (MFNIP), an interdic-
tor selects a subset of arcs in a given capacitated network to fully interdict
them subject to a given budget limitation in order to minimize the evader’s
maximum flow in the remaining network. Two positive numbers are assigned
to all arcs as their capacities and interdiction costs. The problem is known
as cardinality maximum flow network interdiction problem (CMFNIP), if all
interdiction costs are equal to one.

The original form of MFNIP roots back to more than five decades ago,
(see [25, 10]), and has followed by researchers with several variations and
application fields. Wood [26] provided the first 0-1 mathematical program-
ming with two types of valid inequalities for MFNIP and showed that the
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problem is NP-hard (Nondeterministic polynimial time), even in cardinality
case. He also added two types of valid inequalities to the relaxation of the
problem both in general and cardinality cases. Altner, Ergun, and Uhan
[3] suggested two types of polynomially separable inequalities for CMFNIP
and showed that even if the known IP model of the problem defined in [26]
is strengthened, with these valid inequalities, there is still large integrality
gap. Two extended formulations are provided for CMFEFNIP defined in [2],
one based on the valid inequalities of [3], and the other based on some new
valid inequalities.

In a stochastic interdiction problem, some or all parameters are consid-
ered as stochastic variables (see [9, 19, 24]). The maximum reliability path
problem on bipartite networks in the stochastic case is the subject of [23].
They provided a convex hull for the polytope of interdictors decision vari-
ables and strengthened the relaxation model up to 25% by adding separable
inequalities. If there exist information asymmetries between interdictor and
evader, then a more computationally difficult version of the problem will arise
(see [14, 21)).

Interdicting arcs on dynamic network, in which a positive number is also
assigned to all arcs as their traversal time, was studied in [1]. They minimized
the dynamic maximum flow in a given period of time. There is also another
dynamic version in [13], where interdiction strategies may vary in discrete
periods of time.

Network interdiction problems have several applications such as the in-
fection control in hospital (see [4, 17]), identifying critical infrastructure (see
[8, 5]), nuclear smuggling (see [16]), vulnerability analysis (see [5]), supply
chain networks (see [12]), and border control (see [19, 22]). Minimizing the
connectivity of a given network by interdicting a path is another NP-hard
interdiction problem, called the critical disruption path; see [11].

There exists only a (1+¢,1+ %)—pseudo polynomial algorithm for MFNIP;
see [6]. For planar network, there is a fully polynomial time approximation
scheme (FPATAS) for it; see [20]. Recently Chestnut and Zenklusen [7] pro-
vided a 2(n — 1)-approximation algorithm for general graphs with n vertices.

In this paper, we apply the LP (Linaer programming) relaxation of the
model defined in [26] and provide a heuristic algorithm for MENIP. We also
calculate the error bound of the method in general networks, while for some
special networks with proven large integrality gap, we will show that the
proposed algorithm is an a-approximation method.

This paper is organized as follows. In Section 2, we consider the math-
ematical model for MFENIP and provide a new interpretation for MFNIP.
Also we define the concept of “optimal cut”. An st-cut is recommended in
Section 3 as an approximation for the optimal cut, which leads to a heuristic
method. The error bound of the heuristic algorithm is calculated in Section
4. Moreover, we show that the proposed heuristic is an a-approximation al-
gorithm for a class of networks, which overcomes the algorithm defined in [7]
for this special class. Section 5 reports the numerical results for our approach
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on three types of networks, and we compare the performance with the 0 — 1
model in literature. Finally, Section 6 concludes the paper.

2 Interpreting MFNIP

Let G = (N, A) be a digraph with set of nodes N and set of arcs A. Let
N = (G,u,r,s,t) be a given network, in which u and r are the vectors of arc
capacities and interdiction costs, respectively, and {s,t} is the set of terminal
nodes. Our goal in MFNIP is to find the subset of arcs with interdiction costs
lower than or equal to a given limited budget R, whose removal leads to the
least maximum st-flow in the remaining network.

The first mathematical model for MFNIP was proposed in [26], with the
following decision variables:

1 if node 7 is in the sink side of the cut,
=
! 0 otherwise,

9. — 1 if arc (4,4) is the forward arc of the cut,
7o otherwise,

1 if arc (¢,7) is the forward arc of the cut and not interdicted,
0 otherwise,

1 if arc (¢,7) is interdicted,
Yij = .
0 otherwise.

Consider the following integer programming from [26]:

min Z uijﬁij, (1)

(i,4)€EA
st. m—mi+0; >0, (i,5) €A, (1la)
T — s > 1, (1b)
Z 75 < R, (1c)
(i,§)€A
Yij + Bij — 0i; 20, (i,7) € A, (1d)
m€{0,1}, €N, (1e)
0, € 0,1}, (i.5) € A, (1f)
vij €1{0,1}, (i,4) € 4, (1g)
Bij €{0, 1}, (i,4) € A. (1h)
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In optimality, inequality (1d) changes to the equality (see [26]). Hence,
letting 6;; = B;; + vi; leads to the main integer programming defined in [26].
Here we substitute 5;; by 6;; — 7vi; to obtain

min Z i (05 — Vi) (2)
(1,j)€A
s.t. Vij S 6ij7 (Z7J> € A7 (2&)

(1a) — (1c),
€ {0,1}, i €N,
7@7’70'&]' € {071}7 (Lu}) € A.

Note that §;; € {0,1}, for all (i,7) € A, so inequalities (2a) are imposed
to model (2), since no arc out of the cut will be interdicted in optimal case.
The objective function (2) can be rewritten as follows:

mien E uijﬁij—mgx E Ui Yij s
7T7
(i,7)eA (i,4)eA

which means we are solving the minimum capacity cut problem with con-
straints (1a), (1b), (1e), and (1f) and the knapsack problem with constraints
(1c) and (1g), and constraints (2a) relate these two problems.

Remark 1. Solving the 0 — 1 knapsack problem on a cut, means to sup-
pose forward arcs of the cut as items, arc capacity as the item’s value, and
arc interdiction cost as the item’s weight. The limited budget R is also the
limited capacity of the knapsack. Interdicting arc (7, j) corresponds to select
item (7, 7) for knapsack.

Remark 2. The MFNIP is to solve the 0 — 1 knapsack problem on all
feasible st-cuts of the problem and choose the cut, in which the remaining
capacity is minimum after interdiction.

Therefore we define the following concept.

Definition 1. For a given network N' = (G,u,r,s,t) and budget R, an
st-cut C is called optimal cut, if solving 0 — 1 knapsack problem on it (based
on Remark 1), results in minimum remaining capacity on it. The optimal
cut is shown by C*.

Now it is obvious that MENIP is to find the optimal cut according to
Definition 1, which is not necessarily the minimum capacity cut.
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3 Approximated cut

In order to approximate the optimal cut, consider the dual of the LP relax-
ation of model (1) as follows:

max [ — Rw 3)

st > fo— >, fis=F (3a)
Ji(s.j)€A J:(j,s)€A

Yo fi— Y. li=0,i€N, (3b)
j(if)€A j:(Gi)EA

Z fij — Z fit=—1, (3¢)
Ji(t.j)eA J:(4,t) €A

Aij Sy, (4,7) € A, (3d)

Aij —wrij <0, (4,7) € 4, (3¢)

fij —Ai; <0, (4,5) € 4, (3f)

Xij, fi; =0, (i,7) € A, (3g)

fyw > 0. (3h)

The variables f;; and f are the dual variables of constraints (la) and
(1b), respectively, and the variables \;; and w are also the dual variables of
constraints (1d) and (1c), respectively.

For a fixed w, model (3) is a maximum flow problem reduced by a factor
Rw, in which the capacity of arc (i,7) is

>\ij = min{uij, wrij}. (4)

Let w* be the optimal value of w in model (3). Then for w = w*, the
maximum flow value is equal to f* — Rw* and is obtained by capacities
Aij = min{u;;, w*r;;}. The dual problem of maximum flow problem (3) is
the following minimum capacity cut problem:

Ucw* = min Z )\ijéi]», (5)
(i,5)€A
7‘ri—7‘rj+0_ij20, (Z,])EA (5&)
T — 7y > 1, (5b)
0;; >0, (i,5) € A. (5¢)

Arc capacities in model (5) are calculated by (4) with w = w*. Also Cy,~
is the cut obtained by model (5) and Ug,. is its capacity.
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Remark 3. Since w is the dual variable of the LP relaxation problem,
the equality Cy» = C* does not necessarily hold.

3.1 Parametric procedure

In this section, we provide a parametric procedure to calculate w*. For a
fixed w, let f(w) be the optimal value of the maximum flow problem in (3),
according to arc capacities in (4). It is clear that f(0) = 0 and that increasing

. _ _ uij
w increases f(w) Up t0 W = Wpax = MAX(; j)eA -+, SO
ij

max f(w) = f(Wmax) = fmax-

w

Let E(w) be the set of arcs for which their capacities are decreased by the
parameter w:

E(w) = {(i,§) € Al\ij = wri;}.
In this paper, E’(w) is called set of active arcs.
If Ue shows the capacity of s — ¢ cut C, f(w) is the maximum flow, and

Z(w) is the optimal objective value of model (3) by arc capacities obtained
by (4), then by the maximum flow-minimum cut theorem, we have

f(w) = UCw = Z U5 + W Z Tij-

(4,§) ECw\ E(w) (4,7)ECwNE(w)

It is not difficult to verify that f(w) is a concave piecewise linear function,
since increasing w leads to decrease number of arcs in £ (w) and consequently
in C,, N E(w), so increasing w decreases the slope of linear pieces. Let

Z(w) = f(w) — Rw = Z uij +w ( Z rij—R).  (6)

(4,4)ECw\E(w) (i,§)€CwNE(w)

Then for w € [0, f%"], Z(w) is a concave piecewise linear function as
shown in Figure 1. The slope of any linear piece of Z(w) is

s(w) = Z rij — R. (7)

(4,5)ECwNE(w)

Note that similar to f(w), increasing w limits the set F(w) and the slope
s(w) decreases, so Z(w) is a concave function.

Now in order to calculate Z(w), it suffices to start with any w; and w,

with 0 < w; < w, and obtain the cross point of the line passing through point
(wi, Z(w;)) with slope s(w;) and the line passing through point (w,, Z(w,))
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with slope s(w,.). Call this point (w,Z). Whenever Z = Z(w), we stop,
otherwise we update w; and w,.. Algorithm 1 formally explains the procedure.

Algorithm 1 Parametric procedure
Input: G = (N,A), N = (G u,r,s,t); Total budget: R.
Output: Optimal value w*, for problem (3).

1: Let wy =0 and w,- = max(m)eA “7 L

2: For w = w; and w = w,, calculate Z(w) and s(w) from (6) and (7),
respectively;
: Let @ = Zlwn)=Zlw)twe stwg) —wes(n) onq 7 = Z(wy) + (@ — we)s(w);

& s(we)—s(w,)

4: Calculate Z(w) and s(w);

5: if Z(w) = Z then

6: w* = w;

7. if s(w*) > 0 then

8: Let (wy,w;) = (w*, wy);

9: else

10: Let (w;,w}) = (we, w*);

11:  end if

12:  Stop;

13: else

14:  if s(w) > 0 then

15: Let w; = @, Z(we) = Z(w) and s(we) = s(0) ;
16: end if

17: if s(w) < 0 then

18: Let w, = w, Z(w,) = Z(w) and s(w,) = s(w) ;
19:  end if

20: end if

21: Go to step 3

In step (1), lower and upper bounds of w are determined. In step (2),
values of Z(w) and s(w) are obtained. In step (3), the crosspoint of two
lines passing from (wg, Z(wy)) and (w,, Z(w,)) with slopes s(w¢) and s(w,.),
respectively, is achieved. In step (4), values of Z(w) and s(w) are obtained
by using equations (6) and (7), respectively. In step (5), we check the stop
condition, if it is not satisfied, and we update values of w, and w,, in step
(13) and repeat the procedure.

Note that calculating Z(w) and s(w) for a given w in steps (2) and (4),
means to solve a maximum flow problem for which there exist several al-
gorithms, for example, the algorithm of [18], which has a running time of
o(|N||A|). Therefore, Algorithm 1 is running in polynomial time.
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Table 1: Notations

Zrip Optimal objective value of model (1).

Zgrrp Optimal objective value of model (3).

Zy Objective value obtained by applying Algorithm 2.
f(w) Maximum flow with capacities (4).

Z(w) = f(w)— RW.

Ey = {(Z,]) € Cw*|uij < w*rij}.

Eq = {(2,]) € Cyp» Uij > w*rij}.

Iy = {(7,7) € Cyu~|(i,7) is interdicted by Algorithm 2,
(or is selected in knapsack problem)}.

1o = {(27]) € Iy~ U5 < w*rij}-

I = {(Z,]) S Iw*|uij > w*rij}.

3.2 Heuristic method

Now we suggest a heuristic method, and in section 4, we will show this heuris-
tic turns out to be an a-approximation method for a class of networks.

The proposed heuristic is based on the cut Cy+. In this method, we con-
sider cut C,~ as an approximation for the optimal cut C*, and we call it an
approrimated cut, then we solve knapsack problem on it.

Algorithm 2 The heuristic algorithm
Input: N = (G,u,r,s,t), G = (N, A); Total budget: R.
Output: Subset of arcs of cost lower than or equal to R

1: Calculate w* by algorithm 1;

2: Obtain st-cut Cy+, from model (5);

3: Solve 0 — 1 knapsack problem on C,+, according to Remark 2.

It is clear that Algorithm 2 is not polynomial because of step (3), how-
ever one can apply some known heuristics, for example, greedy algorithm to
approximately solve the respective knapsack problem.

4 Error term

In this section, we calculate the error term of Algorithm 2. Table 1 shows
notations, applied in this section.

First, note that f(w) is a linear function in of w and Z(w) is a concave
piece-wise linear function of w, starting from original and meets the vertical
axis in w = f‘“%, where fiax is the maximum value of f(w) among all values
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of w. For a fixed w, the slow of any piece of Z(w) is calculated as follows:

s(w) = Z rij — R.

(&) €C*N{(@:5)lwri; <ui;}

Figure 1 shows the function Z(w), where w, and w, are two arbitrary points
lower and greater than w*, respectively.

Z(w)

Z(w*)

Z(wy)
Z(wy)

wjy w* w, W

Figure 1: Diagram of Z(w)

According to Table 1, we have C,,« = Eg U Fy and L« = IgpU I;. It is
clear that

Zpip=f*—w'R=Uc,. —w'R= > wuj+w( Y rij—R). (8
(1,5)€Eo (i,5)€EL

Also

ZH = Z Ui5 — Z Ui j

(1,5) ECy» (4,5) €L =

<N wm Y o)
(1,5) ECp» (i,j)elL

S Z uj,j—w* Z ’I“ij. (10)
(1,5)ECw» (i,5)€n

Now it is easy to conclude
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Zrip < Zip < Zy
= Zg — Zip £ Zg — Zgip

< g u; —w” E rij — E uy; — w* g rij + w'R

(4,7) EC» (t.5)€n i€Eo (i,5)€En
= Z Usj —w* Z Tij +w*(R— Z Tij)' (1].)
(i.4)€E: (.j)el (i:J)€E

Therefore the relative error is

g — 7 gy — 7
By = 21 %ie Zn = Zip
Zrp ZRIp

E(i,j)eEl uij — w* Z(i,j)ell rij +w* (R — E(m)eEl Tij)

<
2 igyer, Wi + W (i jyer, T — B)
Ligren Wi =W E_@nerl Tig ifs(w*) > 0,
(i,5)€Bq Wii
< (13)
Dper, Wi W X er T TW (R=32¢ jyep, Tii) ifs(w*) <0
Z(i,j)eEO u’i.7+u}*(z(i,‘j)€E1 rij—R) ’

4.1 Approximation scheme for I, , networks

The I, ,, class of networks (see [3]) is defined as follows:

For two positive integers p and x, with k > 2 and p >> &, I, , = (N, A),
where N = {5, UXUY UZ, A= AU AU AU Ab, with |X| = &,
Y| = |2] = p, and

A® ={(s,i), i € X}, ui; =p,  (i,7) € A%,
At ={(i,t), i€ XUY}, ui; =1, (i,j) € A,
Ab:{(ivj)v ierjEY}v Uij = 17, (i,j)EAb,
A ={(s,i),(i,1), i€ Z}, wy=u% (i,j) € AL

All interdiction costs are equal to one and R = u+ s — 1. Altner, Ergun,
and Uhan [3] improved valid inequalities of [26] and showed that adding their
valid inequalities does not improve the value of the objective function. They
also proved that for I, , networks, the integrality gap of model (1) is not
bounded by a constant. According to Definition 1, {(s,i), ¢ € X U Z} is
the optimal cut (see [3]). Solving the knapsack problem on the optimal cut
results in Z;p = p amount of remaining capacity.

In this section, we show that Algorithm 2 finds a bound for integrality
gap of I, ,, networks.
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(w”, |rpl)

(1 %)

Figure 2: Network instance of Iy,,, with capacities \;; = min{u;;,w*}
and p < w* < p?

Lemma 1. Let w* be optimal value for model (3) for an instance of I, ,;
then w* < p.

Proof. Note that
Wi
W* < Wmax = max —2 = 2.
(i,4)€EA Tij

Now by contradiction suppose that p < w* < p?; then we have the network
in Figure 2. All arcs in Figure 2 are labeled with two numbers (a, |b]), where
a is the arc capacity according to (4), and b is the number of such arcs in the
network. It is clear from Figure 2 that {(¢,t), ¢ € XUY UZ} is the minimum
capacity cut with capacity x + p + w*u. Consequently the optimal value of
the objective function of model (3) is equal to

Z(w*)=p+ kK +w'p— Rw".

Comparing two cuts with arc capacities in (4), one with w = w* and one
with w = p, leads to
Z(p) — Z(w*) =p* +p+r— Ry — p—rx —w*p + Rw*
= p? = w'p + Rw* — p)
=p? —wp (p+ k= 1w = p)
=rw —w' —prk+p=(wW" —p)(k—-1)>0
— Z(w") < Z(p),

which contradicts with optimality of w*. Therefore w* < pu. ]

Theorem 1. Algorithm 2 on an instance of I , is i—approximation algo-
rithm.

Proof. Consider an instance I, and assume that w* has been obtained by
model (3). Now we have to solve the minimum capacity cut problem on
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(w”, |rpl)

(L, |ul)
(1%

z Ymm @

Figure 3: Network instance of Iy, with capacities A;; = min{u;;,w*}

the network with arc capacities A;; = min{u,;;,w*} for all (¢,j) € A. This
network is shown in Figure 3.

Note that in arc capacities of Figure 3, we have applied Lemma 1, that is,
min{u, w*} = w*. First we have to find the minimum capacity cut. Among
all st-cuts in Figure 3, there are two st-cuts with the minimum capacity de-
pending on the value of w*: The capacity of dotted cut is equal to kw* +w*p,
and the capacity of the solid cut is equal to p + & + w*pu. Therefore we have
the following two cases:

Case 1: If k(w* — 1) < p, then the dotted cut is the min cut obtained
by model 5, since we mentioned that this cut is the optimal cut and solving
knapsack on it will give us the optimal value equal to u.

Case 2: If k(w* —1) > p, then the solid cut is the result and knap-
sack problem should be solved on it. We have to remove k + u — 1 arcs to
minimize the remaining capacity. By removing all arcs from set Z to node
t and all arcs but one from set X to ¢, the remaining capacity is equal to p+1.

Note that if k(w* — 1) = u either first case or second case may happen.
Thus

ZH—ZIP<M+1—M_1

Zrp Iz w

5 Numerical results

In this section, we solve model (1) for three types of networks and also apply
Algorithm 2 on them to investigate the efficiency of the proposed algorithm.
We carry out all computational tests on an Intel(R) Core(TM)2 Duo Proces-
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Table 2: Results for I, networks

Network parameters Optimal value CPU time  (min:sec)
1 K (IN|, |A]) Zrip  Zn model (1) Algorithm 2
10 2 (23,54) 6.00 11 00:00.509 00:00.692
20 5 (46,170) 5.00 20 00:00.405 00:00.666
40 5 (86,330) 9.00 40 00:00.494 00:00.739
50 5 (106,410) 11.00 51 00:00.415 00:00.818
100 10 (211,1320) 11.00 100 00:00.991 00:01.241
150 20 (321,3490) 8.50 150 00:04.707 00:01.541
150 50 (360,8050) 4.00 150 00:14.781 00:02.303
200 50 (451,10700) 5.00 200 00:24.617 00:03.083
200 70 (471,14740) 3.86 200 00:45.182 00:04.316
200 100  (501,20800) 3.00 200 01:25.428 00:06.858
500 100 (1101,51700) 6.00 500 12:59.496 00:21.992

sor 2.20 GHz, 4 GB of RAM, GAMS 24.2.2 generates models, and CPLEX
12.6.0.0. solves them.

5.1 I, ,, networks

1., networks were introduced in section 4.1. Table 2 shows results for this
class of networks. Eleven I,; , networks with different parameter values were
tested. The column “Optimal value” shows the value of objective function.
Also Zgyp is the optimal value of relaxation of model (1), which shows the
large integrality gap, while Zg is the value obtained by Algorithm 2. Note
that there is no column for optimal value Z;p, since we know that Z;p = p,
so this value is not reported in this column.

It is clear in Table 2 that specially for large amount of k and p, Algorithm
2 is extremely faster than solving the original model (1) by CPLEX. However
results in section 4.1 also confirms the advantage of Algorithm 2.

5.2 G4 networks

In this section, we test the proposed algorithm on some layered networks
called Gy, 4, with g columns of nodes and h nodes in each column. Nodes of
the first column are considered as source nodes and nodes of the last are sink
nodes. Any node in the ith column is incident to all nodes in the i 4+ 1th
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s
Figure 4: Network instance of G h,g
column, for i =1,...,g—1. Arc capacities and interdiction costs are random

integer numbers, uniformly distributed in [10, 30]. Figure 4 shows a schematic
of G, 4 networks.

Table 3 shows the results obtained by solving model (1) and applying
Algorithm 2 on G}, 4 networks. Despite I; , networks, Algorithm 2 does not
perform well on G}, , networks in compare to model (1). Moreover there are
several cases in Table 3, where Algorithm 2 does not find the optimal value.

5.3 Star mesh networks

This section describes tests on star mesh networks; see [15], for a detailed
description of this network type. Figure 5 shows a star mesh network. Also
S, is a star network with p rays and v rings. The node in the center
of the star is the source node s, and all nodes in the outer ray are sink
nodes. Arc capacities and interdiction costs are drawn form a discrete uniform
distribution on [1,10] and [10, 30], respectively.
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Table 3: Results for Gp,g networks

Network parameters Optimal value CPU time  (min:sec)

(h, g) (|V|. |‘4|) R ZRIP Z]P ZH model (1) Algorithm 2
(5,5) (27,110) 43 99 103 105 00:01.974 00:01.741
(5,10) (52,235) 21 207.2 209 209 00:00.550 00:01.721
(6,10) (62,336) 235 230.23 242 253 00:01.250 00:01.140
(8,10) (81,592) 235 670 673 680 00:03.160 00:01.156
(7,9) (65,406) 75 439.8 448 469 00:01.043 00:01.085
(9,9) (83,666) 82 455.105 461 482 00:01.121 00:01.083
(9,15)  (137,1152) 251 22828 239 239 00:02.930 00:01.488
(10,8) (82,720) 257 571.14 574 577 00:00.701 00:01.103
(10,15) (152,1420) 300 290.60 293 293 00:01.144 00:01.582
(25,30) (751,8175) 700 5750.75 5751 5760 01:00.500 02:15.684
(25,30) (751,8175) 2000 1581.25 1582 1585 03:02.430 03:36.746

Figure 5: Star mesh network instance of S, .,

Table 4 provides detailed results on star mesh networks. For fairly small
networks, model (1) is much more faster than Algorithm 2, however as net-
work parameters increase, Algorithm 2 exceeds model (1).

6 Conclusion

In this paper, we applied the 0 — 1 mathematical model for MFNIP in liter-
ature and provided an interpretation and consequently a heuristic algorithm

1

for it. We also showed that the provided algorithm is a -=-approximation al-

H
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Table 4: Results for star mesh networks

Network parameters Optimal value CPU time  (min:sec)
(p,v) (IV1],14]) R Zrip Zrip Zu model (1)  Algorithm 2
(5,50)  (251,505) 30 342 4 4 00:00.609 _ 00:00.942
(10,10) _ (101,210) 25 1542 17 18 00:00.339  00:00.932
(15,10) (151,315) 30 29.3 31 32 00:00.397 00:00.840
(20,15) (301,620) 71 3427 35 35 00:00.490  00:00.990
(20,20) (401,820) 100 29.66 31 31 00:01.176 00:01.033
(25,20)  (50L,1025) 130 3096 32 33 00:00.881  00:01.227
(30,30) (901,1830) 200 29 30 31 00:02.882 00:01.947
(40,30)  (1201,2440) 200 193 50 50 00:04.719  00:03.209
(40,50)  (2001,4040) 300 33.54 34 36 00:20.667  00:09.278
(70,50)  (3501,7070) 500 54.85 55 55 01:36.782 00:36.621
(70,80) (5601,11270) 1000 6.26 7 7 06:30.792 02:14.322

gorithm for I,; ,, class of networks. However the error of the proposed method
was also calculated for general networks.

Numerical results showed that the proposed algorithm is generally faster
than the 0 — 1 model by CPLEX, specially on large size grids and star mesh
networks. Although the proposed algorithm is not polynomial due to the
knapsack problem in it, but it is still faster than 0—1 model on large networks.
The reason is that according to the provided interpretation of the problem,
solving MFNIP is equivalent to solving knapsack problem as many as st-cuts
in the network, while our proposed heuristic algorithm reduced it to solving
knapsack problem just once. This fact indeed, explains its preponderant
performance.
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