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Abstract

We present a novel algorithm, which is called Cutting Algorithm (CA), for
improving the accuracy and reducing the computations of the Least Squares
Support Vector Machines (LS-SVMs). The method is based on dividing the
original problem to some subproblems. Since a master problem is converted
to some small problems, so this algorithm has fewer computations. Although,
in some cases that the typical LS-SVM cannot classify the dataset linearly,
applying the CA the datasets can be classified. In fact, the CA improves the
accuracy and reduces the computations. The reported and comparative re-
sults on some known datasets and synthetics data demonstrate the efficiency
and the performance of CA.
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1 Introduction

Support Vector Machines (SVMs) were introduced by Vapnik in 1995 [14, 15]
within the area of statistical learning theory. SVMs are very popular and
powerful in learning systems. Over the years, a variety of numerical optimiza-
tion algorithms for SVM learning have been proposed [5, 12, 7]. However,
these traditional algorithms may not be applicable for digital computers since
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the computing time required for a solution is greatly dependent on the dimen-
sion and the structure of the problem and the complexity of the algorithm
used. LS-SVMs are least-squares versions of SVMs, which are a set of re-
lated supervised learning methods that analyze data and recognize patterns,
and which are used for classification and regression analysis. In this version,
one finds the solution by solving a set of linear equations instead of a con-
vex quadratic programming (QP) problem for classical SVMs. Least-squares
SVM classifiers were proposed by Suykens and Vandewalle [13]. The LS-SVM
is modified from SVM, which can be used to approximate the nonlinear sys-
tem with higher accuracy [13, 3, 8, 16, 10, 4]. With better performance than
SVM, LS-SVM model has been successfully applied in diverse fields, such
as CO concentration, income, precipitation, wind speed, and so on. In the
original space, the LS-SVM with equality constraints can be expressed as
follows:

min - _fw|? + Zm
s.t. yi:w.go(xi)—i-b—l—m, 1=1,2,...,1, (1)

where S = {(z1,vy1), (®2,vy2),...,(®1,y1)} is a set of | training samples, x; €
R™ is an m~dimensional sample in the input space, y; € {—1,+1} is the class
label of x;, w € R™ and b are weight vector and bias, respectively, and C'
is a positive and sufficiently large parameter and indicates the regularization
parameter. Also, n; indicates the slack variable. Inputs to the SVM system
are the training data and the constant. The system will calculate proper slack
variables 7; and will determine the separating hyperplane. Moreover, 7; is
the training error corresponding to data sample ;. Also, the quantity Cn? is
the “penalty” for any data point @; that either lies within the margin on the
correct side of the hyperplane 7; < 1 or on the wrong side of the hyperplane
1; > 1. Increasing the values of slack variables, helps in reducing the effect
of noisy support vectors. SVMs find the optimal separating hyperplane with
the minimal classification errors. Let w and b denote the optimum values of
the weight vector and bias, respectively. The hyperplane can be represented
as: wlz +b =0, that w = [wy,ws, ..., wy] and T; = [T15, T2, - - ., Trni; W
is the normal vector of the hyperplane, and b is the bias.

Using the nonlinear function ¢, the data are mapped from the input

feature space to a higher-dimensional space. The Lagrange function of (1)
similar to [1] can be built by

1
L(w7b77]7)‘):§”w“2 Z”z +Z)‘ —'w<p )—b—”h‘)’ (2)

where )\; denotes the Lagrange multiplier. The optimal point will be in the
saddle point of the Lagrangian function, and then we obtain
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L= w=2i:1 Aio(z3),

O — )= w=3"'_,\=0,
%=()$>\Z‘=—C’m,
%:Oﬁyi—w-@(ﬂ%)—b—mzo-

3)

Thus, the optimization problem (1) can be transformed into the following
linear system by eliminating the vectors w and 7

0 QT b |0

QK+EI|[A] Y
where Q = [1,...,1]T, A = [Ay,..., N7, and YV = [y1,...,m]7. Also, the
kernel function can be set as:

K(zi,xj) = ¢T($i)¢(ffj)-

Two parameters are required in the LS-SVM model selection, which are
the bandwidth of the Gauss radial basis kernel “o” and the regularization
parameter “C”. In SVMs, the computational complexity always is a big
problem in training stage for sparse data. These complexities reduce ac-
curacy in SVMs. This problem is greater in LS-SVM; what that it is not
sparse. Therefore, we should solve a system of linear equations to eliminate
this problem. In this way, if the number of training data’s increases, then the
computational complexity of the system of linear equations improves. How-
ever, by using the (Cutting Algorithm) CA, we try to improve the efficiency
and reduce the computations of the LS-SVM.

Motivated by the former discussion, in this text, we propose a novel algo-
rithm for solving this problem; we call this algorithm as CA. The CA reduces
computations in training stage for variety of SVMs and also improves the ac-
curacy. We use the CA besides LS-SVMs on training set of samples. Our
idea in this algorithm is to break main problem to smaller problems and solve
each of them separately. As we know, the LS-SVM cannot classify the nonlin-
ear datasets linearly; however, we use the proposed algorithm to classify the
nonlinear datasets, linearly as well. In addition, we compare the proposed
method with some other known methods.

The paper is organized as follows. Next section, the viewpoint of the CA
is stated. We describe the proposed CA in this section. Section 3 explains
the geometry illustration of the CA with one cut. The CA in general case is
studied in Section 4. Section 5 investigates the CA in n-stage cut. In this
section, we discuss some algorithms for the n-stage CA. The computational
results are given in Section 6. Also, comparative results are obtained here.
Finally, Section 7 states the conclusions.
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2 Viewpoint of cutting algorithm (CA)

In this section, we describe the CA. In fact, we find a hyperplane dividing the
training set into two subsets. For finding this hyperplane, we call each sides
of the hyperplane a dimension. Consequently, we choose two dimensions r
and s. On any of these dimensions, by getting the average of vectors of any
class, we may obtain (the average points are denoted by x,s4 and z,,_) the
ZTrst+ and the x5 in the rs hyperplane. It is obvious that, the point @,
is in the positive and the point z,s_ is in the negative class of vectors on
the s hyperplane. The passing line from x,;4 and z,s_ decomposes the
positive class and the negative class into two disjoin parts. Therefore, it
exists a hyperplane passing from the given two average points on R™ and it
is perpendicular on rs hyperplane. The equation of this hyperplane that its
normal vector has two nonzero terms, can be considered as w, , +wsxs+b, =
0 in R™. This hyperplane divides the set S (the training set) into two training
sets S, and Sy as follows:

SU = {(‘Tlvyz) €s | WyTiy + WsTis + bm > 0},
Sa = {(xi,yi) € S | Wiy + Wsis + by, < 0}

As stated before, we can obtain S, and S; from S. As a matter of fact, we
have the following subproblems:

!
. 1 C &
min §||w||2+52m2

im1

sty —wep(r) —b=mny  (Tiy:) € Suy  1=1,2,..., 1y, (4)

and

ld
min gl + 5 3 i
sty —weo(w) —b=mn;, (v, y) €Sa, i=1,2,....l5, (5)

where [,, and l; are numbers corresponding to S, and Sy, respectively. Also,
it is clear that I, +l; = [. In this approach, since the average is done
on two dimensions, so by a little computation, we can find the desirable
disjoin hyperplane, where its normal vector has two nonzero terms. Moreover,
simplicity of this algorithm, simplifies the work of separating the training
sets. The hyperplane dividing the training vector’s set is called the cutting
hyperplane.
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3 Geometry illustration of CA with one stage cut

For the first step, we consider one cut. We are going to disjoint the problem
into two parts. Also, we denote the training vector’s set in positive with X,
and the negative class with X,,, respectively. As a matter of fact, we have

Xp = {il(zs,3:) € S, yi = +1}, (6)
Xn = A{zi|(wi,y:) €S, yi = —1}. (7)

By the former discussion, the following algorithm (Algorithm 1) is given as
follows:

Algorithm 1 The cutting algorithm in two dimension with one cut
1: Input the training set S with [ = 2.
2: Obtaining the average X, and X,, and denote them by vectors z,,; and
T,s—, respectively.
3: Obtaining the hyperplane w,,.z + b,, = 0 that passes from the given two
average points x4 and z,s_.
4: Determine two training sets S,, and Sy for one cut as follows:

Su = {(xi,y:) € S | wma; + by, > 0},
Sa=A{(xi,y:) €S | Wmw; + b < 0}.

5: Using an SVM to determine decision functions f,(x) = sign(g,(z)) and
fa(x) = sign(gq(x)) for S, and Sy, respectively.
6: Output the decision function as follows:

_ f’ll,(x)7 Wm T4 + bm 2 07
fl@) = {fd(r), W T; + by < 0.

For demonstrating the accuracy and the performance, we test CA to clas-
sify some training set for some given (synthetics) data. Figures 1-6 show the
results. In all results, we consider the following hypotheses:

1. All of positive and negative classes have 100 elements.

2. Symbols + and x* refer to the positive and the negative classes, respec-
tively.

3. Line (0) is the separable line w.p(x) + b = 0.

4. Line (—1) is the separable line w.p(z) + b = —1.

(1

Line (+1) is the separable line w.o(z) +b = +1.
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6. For all problems, we set C' = 10.

7. We used the Radius Basis Function (RBF) kernel with ¢ = 1 in non-
I

linear problems (i.e., K(z,z;) =e~" = ).

Figure 1 shows the classification of some data with LS-SVM. In Figure 2
for the same problem, we use the CA in LS-SVM to classify the data. One
can check that the classification is done accurately.

Figure 2: Geometric interpretation of LS-SVM in dominant problem by using CA

Moreover, Figures 3—6 demonstrate the interpretation in order to classify
for nonlinear problems. Figures 3 and 4 show the interpretation of a problem
to classify with LS-SVM and LS-SVM with CA, respectively. Also, Figures 5
and 6 show the interpretation of classification of another dominate problem
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with LS-SVM and LS-SVM with CA, respectively. In none of the test prob-
lems the LS-SVM cannot classify the data accurately, however, the LS-SVM
with CA does that as well.

Figure 3: Geometric interpretation of nonlinear LS-SVM in dominant problem

Figure 4: Geometric interpretation of nonlinear LS-SVM in dominant problem by using
CA

4 CA with one cut in general status

Here, we study the CA with one cut in general case. In this case, in high
dimensions, again we get the average just on two dimensions. Consequently,
this work does not increase the computations. Therefore, the efficiency of
this algorithm improves by increasing the training vector’s dimensions. The
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Figure 5: Geometric interpretation of nonlinear LS-SVM in nondominant problem

Figure 6: Geometric interpretation of nonlinear LS-SVM in nondominant problem by
using CA

proposed method is given in Algorithm 2. Note that, in Algorithm 2, we use
one cut. Although, we can generally use more cuts. Of course, it depends on
problem conditions. In addition, it is better to seclect the dimensions where
the training vectors distributed uniformly on that dimension.

5 CA with n-stage cuts

In this section, the CA with n-stage cut is investigated. After one cut on
training series T, it separates into two subsets Ty and T3. It is clear that, the
subsets Ty and T can be considered as new sets, so they can be cut again.
We denote the sets obtained from cutting Ty by Too and Tp1. Also, the sets
obtained from cutting 7} is denoted by T19 and T}1. These four disjoint sets
are on third stage. Do this procedure for n stage, we have the following sets:

Tiliz...imv m = 1,2,...,7’2,—1, il,iz,...,im c {0,1} (8)
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Algorithm 2 The cutting algorithm in two dimensions with one stage cut in general
case

1: Input the training series S with an arbitrary [ > 2.

2: Choose two dimensions r and s of R"™.

3: Obtaining the average X, and X, in rs hyperplane and denote them by
vectors x,s+ and x,s_, respectively.

4: Obtaining the hyperplane w,z;. + wsx;s + b, = 0 where passes from the
given two average points x,,+ and x,s_.

5: Determine two training series S, and Sy for one cut as follows:

Sy = {(xlvyz) S | Wy Tjy + WsTis + by > O},
Sd = {(xlvyb) es | Wy T + WsLis + bm < O}

6: Using an SVM to determine decision functions f,(x) = sign(g,(z)) and
fa(xz) = sign(gq(x)) for S, and Sy, respectively.
7: Output the decision function as follows:

f(’l') — fu(*r)a WyLip + WsTis + bm > 0’
U Va@), wei - wsiis + b < 0.

In the nth stage (final stage), we have two disjoint subsets T}, 4,. 4,0 and
T iy..i,,1- Therefore, we have 2" subsets in nth stage. If the cutting hyper-
plane in the first stage is wg.x + by = 0, then for any m =1,2,...,n —1, the
cutting hyperplane in the mth stage in the subset T;,;, ;. is as follows:

Wigiria...im - T Digirig..ie = 0, 10 = 0. 9)

Also, the decision function for training subsets 7}, ;,. ;, by using the following
SVM can be obtained as follows:

n

Y = fJ(‘L)’ Jj= 22%7 (10)

k=1

where T;,;,. 4, is one of the 2" numbers of T in the last stage. Now, the
condition p;,i,.. 4, (¢) is define as follows:

s (2) =  Wioiizeinea T + bigirizoiy =0, k=1
Dirig...ix\ L) = b 0 =0
Wigiyin..in_1-L T Oigivis.ip_y < U, 2 =0.

Finally, the decision function will be
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fos po(z), poo(T), - - -, Poo...o()

F@) =1 fi(@), (0 (@), Diria (@) Dirigei, (1)) 5= 2%
. . k=1

f2n—1v pl(x)vpll(x)v v ,p11...1(117)

We test CA for some synthetics data to show the accuracy and perfor-
mance of the proposed method. For instance, Figure 7 shows the geometry
interpretation of solving a classification problem by using CA in two stages
and LS-SVM. We denote by “+” the points that belong to the positive class
and also we denote by “x” the points that belong to the negative class. The
problem is nondominant in the rate 0.5 (i.e., the positive class has 50 vectors
and the negative class has 100 vectors). It is clearly seen that, this problem
is not separable linearly and applying the linear LS-SVM has less accuracy.
However, using the CA in LS-SVM has more accuracy. One can check from
Figure 7 that, the CA is useful in two cases: The first one decreases the
computational and the second one increases the accuracy. Moreover, Figure
8 depicts the geometric interpretation of nonlinear LS-SVM on nondominant
problem by using CA in three-stage cuts. In these synthetics data the LS-
SVM cannot do well but applying the CA in LS-SVM the efficient results
follow.

Figure 7: Geometric interpretation of CA in three-stage cuts

Remark 1. The aim of this paper is to reduce the computations in LS-
SVM and increase the accuracy. By increasing the number of stages in CA,
the accuracy is improves but the computations may be increase. For this
purpose, increasing the stages in high cases are not recommended.
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Figure 8: Geometric interpretation of nonlinear LS-SVM on nondominant problem by
using CA in three-stage cuts

6 Comparative results

The proposed approach in this paper is investigated by several numerical ex-
amples. All computations have been performed with symbolic computation
software MATLAB and the calculations are implemented on a machine with
Intel core 5 Duo processor 2 GHz and 4 GB RAM. We investigate the per-
formance of the proposed approach and compare with the method without
using the CA on some well-known data sets. Table 1 shows the properties
of databases such as the number of samples for the corresponding set and
the dimensions [11, 2]. We consider C' = 10 in LS-SVM. Also, for nonlin-
ear LS-SVM, we choose radius basis function kernel with o = 1. Tables 2

Table 1: Properties of the benchmark data sets (number x dimension)

Dataset BUPA liver Heart-Statlog  Sonar Ionoshere  Australian CMC
No.xDim. || 345x6 270x 14 208x60 351x34 690x 14 1473 %9

and 3 indicate the accuracy (percent) of accepted classification with linear
LS-SVM and linear LS-SVM with CA, respectively. = Now, consider two

Table 2: Accuracy of linear LS-SVM without CA

Dataset BUPA liver Heart-Statlog  Sonar  Ionoshere  Australian CMC
Accuracy (%) || 70.43 84.81 87.50  90.03 86.09 68.36

synthetic datasets that cannot classify with a linear LS-SVM. However, we
can use the proposed CA to classify the dataset with linear LS-SVM. This
is another advantage of the proposed algorithm. In Figures 9 and 10, the
dash line is the LS-SVM classifying the dataset wrongly, but by applying the
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Table 3: Accuracy of linear LS-SVM with CA
Dataset BUPA liver Heart-Statlog Sonar Ionoshere Australian CMC
Accuracy (%) || 71.01 87.04 90.87  92.02 86.52 71.35
° T T, T T
Figure 9: The dash-line is LS-SVM which is wrong but the CA classify the dataset
correctly

CA, the dataset is classified in one hand correctly and on the other hand lin-
early. For more comparison, consider a synthetic dataset which neither the
LS-SVM can classify nor TW-SVM (Twin Support Vector Machine). Kumar
and Gopal [6] proposed a least squares twin SVM (LS-TW-SVM) for pattern
classification. They performed their approach on a synthetic dataset and the
result is shown in Figure 11. It shows that their approach is not effective to
classify the data. Also, we perform the LS-SVM and the LS-SVM with CA
on another synthetic data like the one in [6]. The result is shown in Figure

12.

Figure 10: The dash-line is LS-SVM which is wrong but the CA classify the dataset

correctly
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Figure 11: Classification results of LS-T-SVM
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Figure 12: Classification results of LS-SVM and LS-SVM with CA

One can see that, the LS-SVM cannot classify the data. However, the LS-
SVM with CA does as well. Table 4 shows the comparison of classification
accuracy for LS-SVM, LS-TW-SVM with TW-SVM, GEP-SVM (GEP-SVM:
generalized eigenvalue proximal SVM [9]), and LS-SMM with CA on 6 UCI
datasets. Table 4 shows that the generalization capability of LS-SVM with
CA is better than the other methods on many of the datasets considered.
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Table 4: Comparison in accuracy for linear kernel

Dataset LS-SVM  LS-T-SVM  T-SVM  GEP-SVM  LS-SVM with CA
Bupa Liver 70.43 70.90 70.5 66.36 71.01
Heart-statlog | 84.81 85.55 86.66 85.55 87.04
Sonar 87.50 80.47 80.52 79.47 90.87
Tonosphere 90.03 89.70 88.23 84.11 92.02
Australian 86.09 86.61 86.91 80.00 86.52
CMC 68.36 68.84 68.84 68.76 71.35

7 Conclusions

In this paper, a new algorithm for reducing the computations and improving
the accuracy of the LS-SVM was given. We called this algorithm as Cut-
ting Algorithm (CA). In that, by using some cuts, we tried to reduce the
training stage and therefore reducing the computations. In fact, we broke
the original problem into smaller subproblems. By solving the subproblems
the original problem was solved. We tested the proposed algorithm on some
known datasets. In addition, we showed that the proposed CA can classify
the nonlinear datasets, linearly. The reported results showed that the accu-
racy and the efficiency of the approach. Finally, the work is in progress to
extend the approach to solve this problem by neural network models.
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