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solution of a time-fractional telegraph

equation based on the Crank—Nicolson
method
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Abstract

In this paper, a two-dimensional time-fractional telegraph equation is
considered with derivative in the sense of Caputo and 1 < 8 < 2. The aim
of this work is to extend the Crank—Nicolson method for this time-fractional
telegraph equation. The stability and convergence of the numerical method
are investigated. Also, the accuracy and efficiency of the proposed method
are demonstrated by numerical experiments.
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1 Introduction

Fractional calculus can be used to model many complex problems. It has
been used in many fields of science, engineering, and finance [1, 4, 18, 25, 26];
this fact is the main source of inspiration for most of the recent studies
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conducted on fractional calculus. The classical telegraph equation is used
in random walk theory [2]. The time-fractional telegraph equation (TFTE)
models the neutron transport process in the core of a nuclear reactor [27, 28].

In recent decades, the fractional telegraph equation has been solved by
many researchers. Here, we briefly describe some of the studies that have
been conducted in this field of research. Chen, Liu, and Anh [5] proposed
the analytic solution of the TFTE using the separating variables method.
The homotopy analysis method was used for the TFTE by Das et al. [6].
Yildirim [31] applied the homotopy perturbation method to solve space- and
time-fractional telegraph equations. Momani [17] used Adomian decompo-
sition methods to obtain the analytic and approximate solutions of space-
and time-fractional telegraph equations. Biazar, Ebrahimi, and Ayati [3]
proposed the variational iteration method to solve the fractional telegraph
equation. Jiang and Lin [11] presented the exact solution of the TFTE using
the reproducing kernel theorem. Nikan, Avazzadeh, and Machado [19] used a
mesh-free spectral approach based on LRBF-FD to solve the TFTE with the
fractional derivative described in the sense of Caputo. A radial basis function
collocation method was used for solving the nonlinear TFTE by Sepehrian
and Shamohammadi [22]. Hosseini et al. [9, 10] considered the meshless local
radial point interpolation method, and Mohebbi, Abbaszadeh, and Dehghan
[16] used the radial basis function technique for the TFTE. Shivanian applied
spectral meshless radial point interpolation methods in [23], and the meshless
local Petrov—Galerkin scheme was used in [24] to approximate the TFTE.

Many researchers have studied the fractional telegraph equation by using
the finite difference method. Liang, Yao, and Wang [15] considered the TFTE
by using a fast, high-order difference scheme. The finite difference method
was used to solve the linear TFTE by Li and Cao [14]. Wang and Mei [29]
considered the TFTE using a Legendre spectral Galerkin method in space and
the generalized finite difference scheme in time. For a time-space-fractional
telegraph equation, Zhao and Li [32] used a finite difference method in time
and a Galerkin finite element method in space. A numerical method for the
TFTE was proposed by Wei, Liu, and Sun [30], in which they discretized this
equation with a new finite difference scheme in time and a local discontinuous
Galerkin (LDG) method in space.

In this work, we find an approximate solution to the following TFTE [13]:

OPu(x,y,t)  0°u(w,y,t)
otp otp—1

+u(z,y,t) = Au(z,y,t) + f(z,y,1),
(,y) EQCR0<t<T, (1)

with initial and boundary conditions

u(z,y,0) = o(x,y), (z,) € Q=QU0Q, (2)
Pz 0 _ (), () eQ=0us0, @)
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u(z,y,t) = h(z,y,t), (2,y) € 09, >0, (4)

where 1 < 8 < 2,A is the Laplace operator, 02 is the boundary of €,
fz,y), p(z,y),¥(x,y), and h(x,y,t) are continuous functions, u(z,y,t) €
C%(Q x [0,T]) is an unknown function, and the fractional derivatives are
defined in the sense of Caputo, as follows:

05 u(x,y,t 1 L ou(x,y, s _

Wg_l ):F(2—ﬁ)/o (as )(t—s)l fds, 1<p<2, (5)
aﬁu('rmy)t) 1 k 62u(xay78) 1-8

55 :F(Qfﬁ)/o 552 (t—s) ~Pds, 1<pg<2 (6)

The Crank—Nicolson difference scheme can be used easily for space-
fractional equations, but some manipulations are needed for time-fractional
equations [12]. In [19, 13], a semi-discrete scheme based on the Crank—
Nicolson method was used to discretize the time-fractional equation. In this
work, the discretization of time-fractional derivatives is similar to [12]. The
general idea for proving stability and convergence is taken from [19], but our
approach differs from that in the details.

The remainder of this paper is organized as follows. In Section 2, the
discretization of (1) is described. The stability and the convergence of the
proposed method are proved in Sections 3 and 4, respectively. Section 5 is
devoted to the numerical tests. Finally, the conclusion is given in Section 6.

2 Discretization of the problem

In this section, we explain the discretization of (1) by using the Crank—
Nicolson difference scheme, such that the proposed difference schemes are
uniquely solvable.

Consider Az and Ay as the grid sizes in space for the finite difference
scheme, where {(x;,y;),x; = iAz, y; = jAy,0<i<I,0<j<J;I,Je€R}
covers Q. Also, N is a positive integer, and the grid size in time for the finite
difference scheme is At = % Assume that u; is the value of u (x4, y;,tn) .

The following lemma provides suitable tools for the discretization of (1).

Lemma 1. If g(¢t) € C?[0,T] and 1 < 8 < 2, then
(a)

[ gty —orras

tp—1

1-8
z%ibﬁ{m—k+;f*t%n—k—;f*fw@w—gﬁmﬁ]

+O(At)3 7P, k=1,2,...,N—1.
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Proof. The Taylor expansion allows us to write

() = L 901) oty 02 () — (s — 90" ()],
m € (S,tk) , M2 € (tk,1,8> .

It is easy to show that

tr
/ (b — 5)2(t,_y — )1 ds = ) (A1), w1 €R,

th—1

tk
/ (tg—1 — 3)2(tn7% —5)1Pds = wy(At)4 P, we € R.

tr—1

Thus,

[

tr—1

_9(tr) = g(tk—1) /t'c (1 — ) Pds

At

L " " )2 _N\1-B
N (m)/tkl (tr = )" (t,—y — )" Pds
+ 1 "(n2) " (tp—1 — 3)2 (t, 1 —s)Pds
2Atg & s k-1 n—3
_9t) —glte)  (AO*PT 0 Lo o loog
= Ar X - (n k+2) (n—k 2)

+w(At)3 P weR.

This completes the proof of part (a). Part (b) can be proved in the same
way. O

By defining b, = (s—i—%)zfﬁ— (s— %)%ﬁ? s=1,2,..., 1<pB<2,
it is easy to show that

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628



A numerical approximation for the solution of a time-fractional telegraph ... 611

n—1

B 1., 1.5 1 n—
> oty =of") (@0 g7 = e 507 ) g ot -t
k=1

1

n—2
= - lbn—lu?7j + Z (bn—k—l - bn—k) ui‘ij + ( bl)un_l

52—p 01U |t
k=1

22— UZJ' ’

(7)
By using part (b) of Lemma 3, the discretization of (5) at the grid point
(zi,y;) and the time step (1 — 3) is as follows:

6671“(337%15) 1*% 1 tl_% 8U($i,yj,8) 1-8
B T e ) M e USRI
(At)t=8 to 1 (8)
— 1.0 3-8
=T@_p) < 2F Mg U] + OB

By using Lemma 3 and relation (7), the discretization of (5) at the grid point

(zi,y;) and the time step (n — 3) is as follows:

07 Tu(@,y,t) -3 1 =t 9 Tiy Y, S _
% i TTe =g / %(tnf% —5)' s
t 2=8) = Ju_, .
1 ba-t Ou (4,4, 8) )
(2 — B) — (1 — oy
" re-p) /tn_l Os ( n—jz s) S
_ (At)1*5 o n—2 )
_F(?) - 5) bn-1; ; kz_:ﬂ(b7L—k—1 bn—k)uw

1 L1
~(gm —bui; ™ + 22_5“?,]}

+ O(At)377P, n>21<i<I—-1,1<j<J-1.

(9)
In addition, similar to (8) and (9), and by using the relation
ou|” Ufj — ufj_l At 0%u
A = - : ~ A0 iy Y7o ’ kZ]., Et,,t )
ot |, A T g g @y m) m € (tk—1,tx)
(10)
we obtain
1-1 1— 1 0 0
6’8u(x,y,t) : _ (At) P « 1 Uij = Uy _ @ + O(At)2_’8,
P i r@d—-p) 2258 At ot ;
(11)
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OPu(x,y,t) n-1
g i
(At~ uly — iy
= e A\ n 1 Z n— k—lfbn—k),i
INGEG)) 8t i = At
n—1 n—2 n n—1
Syt Mt Lty
22-F At 22-5 At
+ O(At)* 7, n>21<i<I-11<j<J-1.
(12)
Having the Taylor expansion in mind, we can write
u?;l + uﬁj 2
AutT 4+ Aul.
:1 ZL+11J — 2u; L 113 + ul]-&-l 2up ! + uzLJ_—ll
2 (Aff) (Ay)
+“?+1,j —2up; +uly N Ui — 22U gy }
(Az)? (Ay)?
+O(Az)? + O(Ay)? + O(At)?,
n>1,1<i<I-11<j<J—1.
(14)

Using the finite difference schemes (11), (8), (13), and (14), the discretization
of (1) at the grid point (z;,y;) and the time step (1 — 3) is as follows:

1-8 ul . —ul 1-8
(AP 1wy gy oul’ | (AnTO ()
r@3-p) 2256 At Ot TB_p3) 228 g~ Uiy
L o 1 Julin — 20l bl — 20 g
Jr2 <ui’j +ui’j) 2 { (Az)? + (Ay)?
+

1 1 1 1 1 1
Uiy — 2Ui 5 + Uiy S 2u;j + Ui
(Az)? (Ay)?

135+ 0(Ax) + O(Ay)? + O(A1)*7,
1<i<I-1,1<j<.J—1.
(15)
Using the finite difference schemes (12), (9), (13), and (14), the discretization

of (1) at the grid point (z;,y;) and the time step (n — 3) can be written as
follows:
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(At)!=7 uly — iy
Tl COSI D USREDITESS
4.7 k=1
n—1 _ —2 n—1
1 u, 1 ul — U,
_ ( _ bl) J ] + »J 5J
22-8 At 22-6 At

N S
+ L {bn_lug‘j — Z (bn—k—l - bn—k) u’ltc,j

I'3-25) =
n—1
e (16
1 u?_:lijU” 1+u7 11] U?JL*Q n 1+u2;_11
"2 { (Az)? P
Uyry 2w ity U — 2u U }
(Az)? (Ay)?

1
+ £12 4+ 0(Az)? + O(Ay)* + O(A)* 7,
n>21<i<I-1,1<j<J-1

Finally, rearranging (15) and (16) and neglecting the truncation errors, it
is obvious that the coefficient matrix of the unknowns is strictly diagonally
dominant and so, it is nonsingular [8]. Therefore, by neglecting the truncation
errors in (15) and (16), the unknowns [u?ﬂ 1<i<I-11<ji<J-1)
can be obtained for n = 1 and n > 2, respectively. Hence, the proposed
Crank—Nicolson scheme is uniquely solvable.

3 Stability

In this section, we study the stability of the proposed Crank—Nicolson scheme
for (1) with initial and boundary conditions (2)—(4). To do so, we introduce
the following spaces and recall some theorems and lemmas, which will be
used hereafter.

HY(Q) = {ve L*(Q): Dve L*(Q)},

Hy(Q) = {v e H(Q) : Dv|yq =0},

H?*(Q) = {v e L*(Q): D*v € L*(Q),|a| < 2}.

Theorem 1 (The Cauchy—Schwarz inequality). [21]
If 4 and v are members of an inner product space  with inner product (-, ),

then
[{(u,v)| = ‘/ uvdzx
Q

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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Theorem 2. (Green’s theorem) [21]
If Q is a boundary domain in R”, then

/Vu.VvdXZ/ v@ds—/Auvdx, foru e H*(Q),v e HY(Q).
Q oa On Q

Theorem 3 (The Poincare-Friedrich inequality). [21]
Let € be a boundary domain in R™. Then, there exists a constant ¢, > 0
such that

lull22 < cpl|Vul2s, forallu € HY(Q).

Theorem 4 (The discrete Gronwall theorem). [20]
Assume that k,, is a nonnegative sequence and that the sequence ¢,, satisfies
the following relations:

(bO < 4o,

WV
—

n—1 n—1
¢n§go+zps+zks¢sa n
s=0 s=0

If go > 0 and p,, > 0 (for n > 0), then

n—1 n—1
qsng(ngm)exp(zks), sl
s=0 s=0

We state some useful relations in Lemmas 2 and 3. These are easy to
prove.

Lemma 2. Tt holds that |jul|||v]] < gHuHQ—l—ﬁHUHZ, for all u,v € Q, for all v €
R.

Lemma 3. If b, = (s+%)2_5—(3—%)2_5 (s=1,2,...,1 < 3<2), then
bp <bp_1 <---<by<b <1.

Neglecting the truncation errors, equations (15) and (16) can be written
(At)t=F 1 [uzl,j —up;  Ou

as
0
X PR
r@—-p) 2268 At ot ”]

(At)t—F 1 0 Loy

1 1 (17)
INEE) X 22-B (U” - ui,j) + 2(%‘,]‘ + UU)

1
(Aul; +Aud)) + f77, 1<i<I-1,1<5<J—1,

DN =

and

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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At 1-8 9 0 n—2 uiq o Uf_-l
L _ bn&*u — Z(bn—k—l — b))
INGENG)) ol = At
n—1 n—2 n—1
1 urst =l 1 ul —u
—( — by) 2 gy J J
22-5 At 22-8 At
N =
I(‘(?))— B) { bn—lu?j - Z (bn—k—l - bn—k) Uj j
k=1
n—1 n
1 n—1 n ] + ui,]
(5o — 0wy + ﬁ”w} T
Au?fl + Au?; n—1 . .
z%ﬂ%d% n>21<ig<I-1,1<j<J-1,
(18)
respectively. Let u}; (1 <i <T-1,1<j<J-1n=12,...) be the
approximate solution of (17) and (18) with respect to the round off error,
and let u'; (1<i<I-1,1<j<J-1,n=1,2,...) be the exact solution

of (17) and (18). Define

ef;=ur;—u;, (0<i<I, 0<j<J, and n=0,1,...).

By considering e™ instead of el';, we obtain the following round-off error

equations:

1-8 1.0
(At) % 1 {|:6 € _560} + (61 _ 60)}4—;(614—60) _ %(Ael—FAeo),

7,50

r@—-p) 225 At
(19)
n—2
(At)lfﬁ 0 ek _ ekfl
——— ¢ —b,_10e’ — bp—k—1—bp_) ——
F(?) — B) 1—10€ kZ:l( n—k—1 n k) Al
_( 1 5 )en—l _ en—? N 1 e — en—l
2= ! At 2-F" At 20)
n—2
(At)! 7 { b L .
+ o —bu1€® =Y (ko1 = bog) € = (53— — br)e”
'3 -p) = 2
1 e lrer  Aem 4 Ae?
n = >
To5e } T 2 ’ "=z
where de¥ = % ?j — % . Now, we are ready to present the following
theorem.

Theorem 5. If e¥ € H}(Q), then the solutions of the finite difference ap-
proaches (17) and (18) are unconditionally stable.

Proof. Let o = (FA(g ) . If we multiply (19) by (e — €%), then we obtain

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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7

—7<Ae —|—Ae e —eo>

_60761_60>+2201B <61_60’61_eo>+%<€1+607€1_60>

<6e e —eo>

22 B

(21)
Applying Theorem 2 (Green’s theorem) to <Ael + Ae%, el — eO> in the left
side of (51) and applying Theorem 1 (the Cauchy—Schwarz inequality) and
Lemma 2 to the right side of (51), we can write

2
et = 1P + 35 llet = e+ 5let P = )

s5e0 || el — e
3w ey < i {BIh 122,

2
loe°],

22— BAt

Therefore,

2 2 2
Vel ™ < 17+ IVell™ + 555

and by applying Theorem 3 (the Poincaré-Friedrich inequality), we find a
constant ¢, > 0 such that

acy
22-8

Ve ||” < (cp + 1) | Ve°||” + [vse?||”. (22)

If we multiply (20) by (e™ —e™™'), then we find

(0%
PR

—
22-B(At)
=+ 1 <en + en—17en _ en—1>

= ab,_1 <5eo, e’ — e"_1>

en _ en—l7en _ en—1> + <en7en _ en—1>

Ae” + Ae™~ 17 n_en—l
{

[N}
l\DM—l

n—2 ek _ k=1
+ « Z (bnfkfl - bnfk) <Ta e — 6n71>
k=1
n—1 n—2

€ — €

1
+ a(w — b1)<T,e" — e”_1> + aby,—1 <eo,e" — e"_1>
n—2
+« Z (bn—k—1 — bn—k) <ek, e — e”_1>
k=1

+a(s5— —b)(e" e —e" ).

1
22-0
(23)
Applying Theorem 2 (Green’s theorem) to <Ae" + Aen 1 en — e"_1> in the
left side of (23) and applying Theorem 1 (the Cauchy—Schwarz inequality)
and Lemma 2 to the right side of (23), we obtain
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o n n— « n (6% n n—
m”e —€ 1||2+(22_5H€ I* - 925 (e" e 1>)
1 1
+ WP = [l ) + 5 Uver ] = [[ver ")
2
72 9 e — enfl
< abn,l(— H560H + H 2 H
+a§jnk1—mku2w———fW+ g e =)
2 - L e
T P+ 5slle” = e )
2
72 9 e 7677,71
+abn,1(? HeOH +7” 52 H )

Yk .
03 (i = b))+ 5 e = e~ )

12 n—1(2 i n__ _n—1)2 R
ol P 4+ gl - e ). TER
(24)
Furthermore, from Lemma 3, we deduce that
O‘bnl gi —b )+3<2—O‘ eR (25)
’7 £ n k—1 n—k ’Y =5 y .
Having (25) in mind, equation (23) gives
1 1
gl — T gl gl + ver®
2 2 n—2
<abuoa g {06 1)} + 5= D (bumie — buo) |
k=1
n ay? = (b —b )Hek _ ek—1H2 + ay? Hen—l _ en—2H2
2(At)? £ TR 2(At)2
2
ary 1 n—1112 2a e o n  n—
FEL 4 DI+ 2 o = P4 o (e e
P Ve, ver
(26)

By using Theorem 1 (the Cauchy—Schwarz inequality) and Lemma 2, we

obtain )
[lem ]

2
a -1 a |l
W <€"7 e > S 2275 { 5 + B . (27)
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Consider the following relations:

ay? n_Q(b _b )H E_ k71||2_|_ ay? ’ n—1 _ n72||2
2(At)2 e n—k—1 n—k) ||€ € 2(At)2
2 n—2
2 Z N (e e (28)
=1

Y n— ne
N2w61W+w ).

If we use (27)-(28) and assume that 72 = 2378 (At), then relation (26)
allows us to write

1 TL n n
R T e 2
o n—2
vy 2 2 ay 2
b {5 %) + 5 3 ks~ [
ay? = k|2 k—1|2 ay? 2|2
i 2 Gt =) (11 16 1°) + i e
ay? ay? o Loy sz 1 n_1/2
R e =R ] il (] | ] R
(29)

By using Theorem 3 (the Poincaré—Friedrich inequality), we find a constant
¢p > 0 such that relation (29) implies

abn7172 abn,172

%nvennk 7 eIVl + =5 e [ Vel
T S Y
k=1
" &; Z(bk - bn_w(HVe’“HQ +veh G0
e A G
o= o N R

We may assume without loss of generality that there exist constants 61,605 > 0
such that relations (22) and (30) can be written as

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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Vet |* <00 [ + 6z [[Voe| |,
n—1
Ve l? < (0 [9e )+ 02 V6] ?) + 3 (e [0EH]7) @1
k=1
n>2 0,00>0, c>0for k=1,...,n—1.

By Theorem 4 (the discrete Gronwall theorem), equation (31) yields

n—1

HV@"H2 < (91 HV€0H2 + 05 HV&@OHQ) exp (Z ck> , n>1,01,0, >0,
k=1

and according to Theorem 3 (the Poincare—Friedrich inequality), there exists
a constant ¢, > 0 such that

n—1
He”||2 <% (91 HV@OH2 + 6o HV(S@OHQ) exp (Z ck> , n>1,01,00>0.
k=1
(32)
By using Lemma 3, it is easy to show that
n—1
Say? «@
2
;ckﬁ (20(7 +(At)2+22ﬁ+1> cp+ 1. (33)

Set § = (20572 + % + 525 + 1) ¢p+1. Then, it follows from relations (32)
and (33) that

le"|| < \/ap (01 191 + 02 [ V8O ) exp(6), n > 1,601,656 > 0,6, >0,

where 61,6, 6, ¢, are independent of n. O

4 Convergence

In this section, we study the convergence of the proposed Crank—Nicolson
scheme for (1) with initial and boundary conditions (2)—(4).

Letup; (1<i<I-1,1<j<J-1,n=1,2,...) be the exact solution of
(17) and (18), and let U, (1<i<I—-1,1<j<J—1,n=12,...) be the
exact solution of (15) and (16). Define £'; = U, —ui; (1 <i<I-1,1<

i<J—-1,n=1,2,...). By considering " instead of §ffj we obtain

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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(At)1=F 1 & (Ap-s 1
TGP Era TG EA et (34)
1
A; +O(Az)? + (O(Ay)? + O(A)*F),

and

( t n—2 é.k_l 1 £n—17é~n—2
F(3 6 { kX:l n—k— l_bn k) - _bl)

At (52=5 N
+221 B %}
_ w + (0(A2)? + O(Ay)? + (MDY, > 2.

Now, we are ready to present our next theorem.

Theorem 6. If ¢¥ € H} (), then the solutions of the finite difference ap-
proaches (17) and (18) are unconditionally convergent.

Proof. Let o = (19(? R If we multiply (34) by (51), then we obtain

« a 1 1
oA €€+ s (€6 + (66 - 5 (8 €)

(36)
=< (O(A2)? + O(Ay)? + O(At)*7F) &' > 0.
Applying Theorem 2 (Green’s theorem) to <A§1,§1> in the left side of (36)

36
and applying Theorem 1 (the Cauchy—Schwarz inequality) and Lemma 2 to
the right side of (36), we find that

£l 1
o I e e + S Ly

a2 2
_ loway? +O(Ag) ro@|P ¢
Therefore,

IVEH? < O(A2)* + O(Ay)* + O(AL)* 7|12

(37)
If we multiply (35) by (" —¢"~1), then we obtain

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 607-628
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(0% (0%

m <§n _ fn—l’gn _ fn—1> + 57 <£n7§n _ é-n—1>
+ % <£n +§n717£n o §n71> o % <A€n + Agnflvé-n 7€n71>

n—2 é‘k _gk,1
=« ]; (bnfk;fl - bn,k) <T’€Tl _ é—n—1>

1 n—1 _ ¢n—2
+ 0‘(2275 - bl)<%a§n - gn_1>
n—2
+ « Z (bn—k—l - bn—k) <§k’£n - €n71>
k=1

+ a(ﬂ%ﬁ _ bl) <£n—17£n _ gn—1>
+ < (0O(Az)* + O(Ay)® + O(AL)*F) [ ¢n — ¢ty
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Again, using Theorem 1 (the Cauchy—Schwarz inequality) and Lemma 2, we

can write

< (O(Az)*40(Ay)? + O(AL)* Py, en —gn—t >

ni2
< 0(an)? + O(ay)? + (a2 4 1] :

e

Simplifying relation (38) (similar to Theorem 5, in which the simplification

of (23) resulted in (29)) and using the recent relation, we obtain

1 «
27925

n 1 n
ler1” + 5 Ive I*

2 n—2
< [|0(A2)? + 0y + 0P|+ T3 (b gr — b [[€4]]
k=1

n—2
ay? 2 12 ay? a2
a2 ;(bn—k—l—bn—k)d\ﬁ’“\! D + a6
ary? ay? o 12 1 1012
+(5- +(At)2+2><22—5+1)ug T+ Ive I, n>2

By Theorem 3 (the Poincaré-Friedrich inequality), there exists a constant

¢p > 0 such that
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1
5 IVE"I” < 110(A2)* +0(Ay)* +O(An)* 7|

2 n—2

+ 5 D, (it = bui) [VEH|?
k=1
ay? - k1|2 k—12
N (At)ch;(bnfkfl—bn—k)(HVf 7+ IVe") (39)
+ S ve

[ V)

2
ay ary e
ot e e

+1)e, Ve
Gl

As we know, €Y = 0. Without loss of generality, relations (37) and (39) can
be written as

Ve || < [|o(A)® + O(Ay)* + 0(at)> %,

n—1
IVE"|? < 2[|0(A2)? + O(Ay)? + O(A>P|* + 3" G | Ver|”,  (40)
k=1
n>2 Cg>0 for k=1,...,n—1.

Thus, by using Theorem 4 (the discrete Gronwall theorem), the set of equa-
tions (40) yields

n—1
[Ver(|” < 2[|0(Az)? + O(Ay)? + O(At)2*5||2exp (Z ck> , n>1,

k=1

and according to Theorem 3 (the Poincaré—Friedrich inequality), there exists
a constant ¢, > 0 such that

n—1
1€"]1? < 22, |O(Az)? + O(Ay)* + 0(At)2*ﬁ||2exp <Z C’k> . n>1.

k=1
(41)
By using Lemma 3, it is easy to show that
n—1
Sary? @
2
;Ckg(mw +(At)2+22_5+2>c,,+1. (42)

Set ¢ = (20472 + % + 525 + 2) ¢p+1. Then, relations (41) and (42) allow
us to write
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€] < /28 exp(Q) |O(AZ)? + O(AY)? + O(AL)*P||, n>1,(>0,5 >0. (43)
O

5 Numerical experiments

In this section, we present some numerical tests that confirm the validity of
the proposed numerical method. To measure the accuracy of the proposed
method, we use the maximum absolute error given by

Lo = max f]” (T) - Uivj(T) ’

sisllsgs<

where U; ;(T) and U; j(T) denote the numerical solution and the exact solu-
tion of (1) with initial and boundary conditions (2)—(4) at (x;,y;) and time
T, respectively.

Example 1. Consider a two-dimensional test problem of the form (1),

with © = [0,1] x [0, 1], /(1) = (B + 2y + 24472 ) sin(ra + 7y) +

t*sin(mx + my), and suppose that the initial and boundary conditions are
assumed using the exact solution u(z,y,t) = t*sin(rx + 7y); see [13]. Now,
we provide some tests.

Test 1 Kumar, Bhardwaj, and Dubey [13] considered this example using
a local meshless method with 2025 points on ). They reported the maximum
absolute errors and CPU time with § = 1.7,1.9 and different values for At
at the time T' = 1.0. Using the proposed method, we repeated this test. We
considered this example by assuming I = J = 45 (2025 points on Q). To
solve the linear system of equations, we used the GMRES-m method with
m = 20.

Table 1 presents the maximum absolute errors and CPU time obtained by
Kumar, Bhardwaj, and Dubey [13] and the results of the proposed method
with g = 1.7, different values for At, and 2025 points on [0,1] x [0,1] at
T = 1.0. Table 2 presents the maximum absolute errors and CPU time
obtained in [13] and the results of the proposed method with 8 = 1.9, different
values for At, and 2025 points on [0, 1] x [0,1] at T = 1.0.

As Tables 1 and 2 show, the maximum absolute errors and the CPU time
of [13] and those of the proposed method are close, but the CPU time of the
proposed method is smaller than that of [13].

The following tests show that the proposed method provides acceptable
accuracy with a smaller number of points on (2.

Test 2 We considered this example by the proposed method with Az =
Ay = 0.1, g = 1.5,1.9, and different values for At. According to Table 3,
with different values for At, the maximum absolute errors were small enough
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at T'= 1.0. Also, decreasing the size of the time step increased the CPU time
very slowly and improved the accuracy. The value At = % was selected for
the next test.

Test 3 We considered this example by the proposed method with At = 8—10,
B = 1.5,1.9, and different values for Ax, Ay. According to Table 4, the
accuracy was acceptable. Also, the CPU time was reasonable with Ax =
Ay = %, %. Moreover, by decreasing Ax and Ay to ﬁ, 8—10, the CPU time
increased rapidly, and the accuracy did not improve significantly. According
to relation (43), the convergence rate of our method depends on Az, Ay,
and At. In this case, the space steps decrease, but the time step is constant.
Therefore the accuracy does not improve.

As shown in Tests 2 and 3, a very small size the of space step is not
recommended, but small size of a time step is recommended. According to
Diethelm, Garrappa, and Stynes [7], a high-order space discretization for a
time-fractional partial differential equation is not advisable. They believe
that to reach a high convergence, we must choose very small size of the time
step in comparison with the size of the space step. Our experiments confirmed
this idea.

Table 1: Comparison of the maximum absolute errors and CPU time with
B = 1.7, different values for At, and 2025 points on [0,1] x [0,1] at T = 1.0

At [ Lo [13] Lo CPU (s) [13] CPU (s)
L1.2917¢ — 02 1.257he — 02 1.751 1.414
L | 5.4532¢ — 03 8.7100¢ — 03 2.210 1.996
L | 2.3351¢ — 03 5.0648¢ — 03 3.062 2.746

Table 2: Comparison of the maximum absolute errors and CPU time with
B8 = 1.9, different values for At, and 2025 points on [0,1] x [0,1] at T = 1.0

At | Lo [13] Loo CPU (s) 13] CPU (s)
T127619¢ — 02 1.6456¢ — 02 1.751 1.298
4 1.3079¢ — 02 1.0294e — 02 2.210 1.613
L1 6.1953¢ — 03 5.7166¢ — 03 3.062 2.119

6 Conclusion

The Crank—Nicolson difference scheme can be used easily for space-fractional
equations, but some manipulations are needed for time-fractional equations.
In this paper, the Crank—Nicolson method was extended for the discretiza-
tion of a TFTE. The solvability, stability, and convergence of this proposed
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Table 3: Maximum absolute errors and CPU time for different values of At
and 8, with Az =Ay=0.1at T =1.0

B=15 B=19
At Lo CPU(s) L CPU (s)
L T13159¢ — 02 0.1069 | 1.9190¢ — 03  0.1041
L1 1.0567¢ — 02 0.1249 | 1.2971e — 03  0.1269
L | 7.5001e — 03 0.1673 | 8.3675¢ — 03  0.1713
L | 5.5027¢ — 03 0.2044 | 5.7025¢ — 03 0.2908
@ 43813¢ —03  0.6513 | 1.9956e — 03  0.6423
oo | 3.7898¢ —03  1.7490 | 3.3609¢ —03  1.7547

Table 4: Maximum absolute errors and CPU time for different values of Az,
Ay, and 5, with At = % at T =1.0

B=15 B=19

Az = Ay Lo CPU(s) Lo CPU (s)
T 5.5027¢ — 03 0.2944 | 5.7025¢ — 03 0.2908
= 3.1200e — 03 0.4722 | 3.6015¢ —03  0.4273
= 2.5315¢ — 03 3.6787 | 3.0738¢ —03  2.2135
= 2.374de — 03 74.7221 | 2.9432¢ —03  35.9883

method were proved. The numerical results were accurate enough. Accord-
ing to the numerical tests, to reach a high convergence, a very small size
of the space step is not recommended, but a small size of the time step is

recommended.
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