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Review of the strain-based formulation
for analysis of plane structures

Part I: Formulation of basics and the existing elements

M. Rezaiee-Pajand*, N. Gharaei-Moghaddam and M. Ramezani

Abstract

Since the introduction of the finite element approach, as a numerical solu-
tion scheme for structural and solid mechanics applications, various for-
mulation methodologies have been proposed. These ways offer differ-
ent advantages and shortcomings. Among these techniques, the stan-
dard displacement-based approach has attracted more interest due to its
straightforward scheme and generality. Investigators have proved that the
other strategies, such as the force-based, hybrid, assumed stress, and as-
sumed strain provides special advantages in comparison with the classic
finite elements. For instance, the mentioned techniques are able to solve
difficulties, like shear locking, shear parasitic error, mesh sensitivity, poor
convergence, and rotational dependency. The main goal of this two-part
study is to present a brief yet clear portrait of the basics and advantages of
the direct strain-based method for development of high-performance plane
finite elements. In this article, which is the first part of this study, assump-
tions and the basics of this method are introduced. Then, a detailed review
of all the existing strain-based membrane elements is presented. Although
the strain formulation is applicable for different types of structures, most
of the existing elements pertain to the plane structures. The second part
of this study deals with the application and performance of the reviewed
elements in the analysis of plane stress/strain problems.
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1 Introduction

Numerical methods are proved to be powerful and effective computational
tools for analysis of complicated and practical engineering problems. Ac-
cording to different features of scientific activities and in demand of spe-
cial requirements, many diverse numerical techniques are developed in the
past decades, such as the finite element method, finite difference technique,
boundary element method, and discrete element approach. Each of these
various numerical methods have their own advantages and shortcomings, but
the finite element methods gain more popularity due to their strong math-
ematical bases and inherent capabilities, which result in increasing applica-
tion of this scheme in different fields of science and especially engineering
fields [5, 6, 28, 39, 40, 42, 43, 78, 79]. Therefore, various formulation tech-
niques are developed in the past decades and there are thousands of finite
elements available for analysis of dissimilar types of problems and structures
[8, 13, 21, 22, 41, 53].

Among the available approaches for finite element formulation, the most
well-known and widely applicable one is the displacement-based technique.
This method, which sometimes is called with different terms, such as, the
classical or stiffness approach, is the first scheme that was used for the de-
velopment of finite elements; see [80]. Clear and straightforward process and
applicability to different types of problems and structures are the promi-
nent advantages of the displacement-based formulation for structural and
mechanical applications. However, this process has various shortcomings.
For instance, inaccuracy and discontinuity of stresses, which are secondary
parameters in stiffness approach, are a vital deficiency in structural applica-
tions, where stress is a decisive parameter in the design practice; see [33, 52].
It should be noted that this problem can partly be solved by using higher
order formulations, which leads to the application of internal nodes, and
increases computational costs, and reduces the numerical efficiency of the
analysis [23, 36, 54, 55]. Another common problem of displacement-based
finite elements in various locking phenomena, such as, shear and membrane
locking, which necessitate special treating, which sometimes requires con-
siderable time and effort and reduces the efficiency of the method [54, 55].
Moreover, in severely nonlinear problems, the displacement-based elements
usually necessitate utilization of very fine meshes, which is inappropriate
from the efficiency standpoint [46, 47, 74]. To remedy the mentioned and
other shortcomings of the displacement approach, other finite element for-
mulations, such as the force-based, hybrid or mixed, assumed stress, and
assumed strain has been developed. Fortunately, these new procedures have
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their own advantages and shortcomings. For example, the force-based for-
mulation performs very well in the linear and nonlinear analysis of frame
structures and also provides an appropriate platform for the development of
advanced frame elements [3, 34, 56, 57, 73, 76]. It is reminded that the force
formulation approach is limited to skeletal structures and that its application
for continuous structures is very difficult if not impossible.

Although each method has different merits and limitations, some of the
approaches have received more attention from researchers, while the others
have remained less treated. One of these techniques that has received less
attention despite its promising performance, is the strain-based or assumed
strain approach [17, 25, 35, 38]. Therefore, the main purpose of this study is
to introduce basics of the strain-based formulation. The strain formulation
method can be classified in three distinct groups, namely free formulation,
assumed natural strain method, and direct approach.

The free formulation method is based on the kinematic decomposition,
in which the element displacements are decomposed in two basic and higher-
order parts [25, 38]. The basic part represents the rigid body motions and
constant strain state, which is necessary for the convergence criteria. On the
other hand, the higher-order terms improve accuracy of the finite element
by establishing proper rank of the stiffness matrix. The conditions of force
and energy orthogonality result in the algebraic formulation of the stiffness
matrix, which satisfies the individual element test. It is noteworthy that
the strain functions in this method are dependent on displacements one; see
[19]. The second method for the development of strain-based elements is the
assumed natural deviatoric strain (ANDES) approach [27]. In this technique,
the independent strain function is applied, which includes basic and higher-
order parts. The deviation of strain from the constant strain is represented
by the higher-order part of the strain function. In this way, the higher-order
part is selected so that the integral of higher-order strain through the element
equals zero. Therefore, ANDES technique satisfies the individual element test
[27].

The third method is the direct formulation approach, in which Taylor
series for the strain field is used to approximate the strain field [63]. The
resulting elements from this approach lead free from the shear locking and
parasitic shear error. The strain states in this approach can be divided into
rigid body motions, constant strain, and higher-order strain states. The rigid
body modes and constant strain states guarantee the convergence of result-
ing element. The higher-order terms have a parametric form that can be
optimized to obtain efficient elements. The optimization is performed by en-
forcing different optimal conditions. Some of these optimal conditions will
be discussed in the coming sections. It is important to note that the opti-
mization process of the finite element templates is a relatively complicated
task that requires innovation [63].

As mentioned, the strain-based formulation itself can be categorized in
three different subdivisions. In this study, only the direct method is covered.
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After the presentation of the formulation basics, a detailed review of the
existing assumed-strain membrane elements is presented. This article is the
first part of a two-part study. In the second part, numerical comparison of
the reviewed elements is performed. This article is organized in the following
order: Section 2 presents basis steps for the development of the plane elements
with the assumed strain approach. Other important optimal criteria for
assume strain elements are introduced in Section 3. The existing triangular
membrane elements are reviewed in Section 4, and Section 5 discusses the
available quadrilateral plane elements. In Section 6, some of the accessible
strain-based elements for the other types of structures are briefly introduced.
Finally, Section 7 presents the concluding remarks of the article.

2 Basics of the formulation

In the assumed strain formulation, the element strain field is approximated
by an assumed mathematical function. As mentioned, like any other form
of the finite element formulation, there are different types of assumed strain
formulation [4, 20, 26, 37]. However, in this study, only the direct strain-
based formulation will be discussed [63]. The following formulation steps
pertain to development of plane finite elements. Needless to say, the pre-
sented process can be simply applied to the other types of elements with only
slight modifications. The main reasons behind narrowing the scope of the
present review are the availability of the relatively large number of existing
strain-based elements developed based on the various types of strain-based
formulation. These researches made the current study very lengthy. More-
over, the growing interest from the structural analysis community toward
the direct method in recent years, and also the valuable experiences of the
authors in this field, which should be exposed to the younger analysts.

In the case of plane problems, the strain field consists of three components,
namely e, €y, and 7,,. Based on the Taylor expansion, each function can
be approximated by a polynomial function of arbitrary order. Therefore, the
strain components are approximated as follows:

2 2
en (2,9) = (2)o + (2,0) 02 + (c2,9) o + (ex,30)g (%) + (em,m0) o (@9) + (e yn)y (%) + -
2 2
ey (@, y) = (ey), + (sy,2) 0@ + (cy,y) o¥ + (ey,22), (TT) + (ey,zy), (@¥) + (sy,99), (yT) +o
oy @0 9) = (rap), + (aye) o2 + (ay,) v + (veae), (%) + (ayey)y @) + Gayun) () +-- -

W
Here “,” indicates differentiating with respect to its following variable. More-
over, the subscript “o” indicates the value of the strain gradient at the origin
of the coordinate system. The coefficients with the subscript “o” are called
strain states. Selection of diverse polynomials with a different number of
terms and various orders results in finite elements with a different number
of degrees of freedom, as well as, the specific properties. Due to the impor-
tance of the constant strain states for the convergence of the resulting finite
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element, the selection of the constant and linear terms for strain components
is necessary. Selection of the higher-order terms would increase the accuracy
and the convergence rate of the resulting finite element, but instead reduces
its numerical efficiency. As it was mentioned previously, it is possible to ap-
ply different optimal criteria, such as pure plain bending test, for improving
performance of the resulting finite element. However, such optimal condi-
tions are optional, and the only necessity is to include the constant terms
in the opted assumed strain field. However, similar to the classical formu-
lation, it is suggested not to give any priority to each of the coordinates, (z
or y). In addition, if the analytical estimation of the strain field is available,
then the terms of the approximated field can be selected based on the known
analytical solution.

Nevertheless, after choosing the desired terms, the assumed strain field
can be optimized by applying any desired optimal condition [38, 63, 71].
The most common criteria are compatibility and equilibrium conditions [63,
71]. The compatibility of the strain field is achieved provided that the next
relationship exists between the strain components [71]:

%, | 0%y _ 0%y
oy 02® Oxdy’

(2)

It is obvious that in the general case, for the satisfaction of the compatibility
or any other criteria; it might be needed that some strain states be dependent
on each other. Therefore, imposing the optimized condition results in the
dependency of some strain states to each other and therefore, it reduces
the number of independent strain states [27]. As it will be shown later,
the number of independent strain states is equal to the number of required
degrees of freedom for the element.

The other conventional optimal condition is the equilibrium. It was
proved that if the equilibrium equation is satisfied within an element, then it
can be included in the Trefftz formulation [27]. The equation of equilibrium
for the plane problems is defined as follows:

do 0Ty,
= + Y+ F, =0,
{ ox Jy (3)

doy OTay _
dy + oz +Fy _0’

where F, and Fy are the body forces in the z and y directions, respectively.
Also, 0., 0y and 7., are normal and shearing stresses, respectively. To
rewrite the equilibrium equation in terms of strain, it is necessary to relate
the stresses to the strains. For the plane problems, the coming relations
connect stresses and strains:

0z = 2Ge, + Meg +&y),
oy =2Gey + Mex +&y), (4)
Ty = GYay-
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In the previous equations, G and v are the shear modulus and Poisson’s ratio,

respectively. Indeed A is called the Lame constant and is equal to %

for the plane stress condition. In the case of plane strain, this constant is
equal to W?—%) Here, FE stands for modulus of elasticity. Substituting
equations (4) in the equilibrium equation results in the following relations:

()

{(2G+A)%ﬁ; +A%E + G2+ F, =0,

A= 4 (2G+ N + G2 L Fy =0,

Yy oy ox

It is noteworthy that imposing the optimized conditions, such as; compati-
bility and equilibrium, is not necessary steps for developing a plane element
based on assumed strain approach, and as it will be shown in the coming sec-
tion, there are finite elements, which do not consider these criteria [71, 72].
However, enforcing these conditions to the assumed strain field improves the
performance of the resulting element. As mentioned previously, the inclusion
of the optimized condition makes some of the strain states to be depended
on the other ones. When the dependent strain states are determined, the
assumed strain field is rewritten in terms of the independent ones. The next
step is to calculate the associated displacement field. For this purpose, the
strain-displacement formulas are utilized:

Ex = %7
€y = Gy (6)

Yoy = %(%Z +29).

In these relations, u and v are displacements in the z and y directions,
respectively. Based on these qualities, the displacements in z and y directions
are derived by integrating normal strain components with respect to their
associated coordinates:

v(z,y) = [eydy + fa().

Here, f; and f5 are the results of integrating shear strain with respect to
the coordinates and imposing the rigid body modes condition. In the case
of plane problems, three rigid body modes exist in the displacement field,
namely u,, v,, and 7,, signifying the rigid body displacements in z and y
directions and the rigid body rotation, respectively. As it was mentioned, the
existence of these terms is the necessary convergence condition. Accordingly,
these modes are also counted among the independent strain states that can
be arranged in a vector arrangement indicated by S. This vector is called
strain state vector, which consists of the independent strain states. They
are the coefficients of the strain field approximations in (1), as well as, the
rigid body modes. The strain state vector is somehow equivalent to the
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nodal displacement vector in the traditional displacement-based approach.
By using the matrix notation, which is traditionally used in finite element
formulation in structural engineering applications, it is possible to relate the
displacement and strain fields to the strain state vector in the subsequent
forms:

U=N,S+T, (8)
e =DB,S +¢. 9)

In these equations, Ns; and Bj represent the displacement and strain inter-
polation matrices, respectively. The particular response of the displacement
and strain fields, that is, U and &, depend on the body forces. The next
relation can be established between the vectors of nodal displacements and
the strain states:

D=AS+D=D+D. (10)

Here, D and D are the nodal displacement vectors and the displacements
due to body forces. Also, A is a geometric matrix including of the nodal dis-
placement interpolation matrices. It is possible to construct the subsequent
relations between the displacement and strains’ fields of the element with the
nodal displacement vector using (10) as follows:

U=N,S+U=N,(A"'D)+U=(N,A)D+U=ND+U, (11)
e=BS+e=B,(A"'D)+e=(B;A"')D+&=BD +¢. (12)

Assuming the body forces to be negligible in comparison with the applied
external loads, the strains and displacements due to body forces, € and U,
are neglected.

The final step of the formulation is to derive the element stiffness matrix
and the nodal force vector. Among different approaches for this purpose,
the minimization of the total potential energy is the most common approach.
The total potential energy functional can be established as follows:

1
=2 /oTs v — /UTF dV — DT P,. (13)

In this equation, P.,; and F' stand for the external nodal and the body
forces, respectively. The element stiffens matrix and nodal force vector are
derived by establishing the stationary of the following functional:

g% =AT (/ BSTDmBde> A D-A"T (/ NSTde) —Poyy = KD—P =0. (14)

Therefore, the element stiffness matrix and the nodal force vector are
derived in the following form:



444 Rezaiee-Pajand, Gharaei-Moghaddam and Ramezani
K=AT </ BSTDmBde> ATt = ATTK AT (15)

P=P,+AT </ NSTde> , (16)

where, D,, is the material matrix:

lv 0
D, = vl 0 |. (17)
O

It is noteworthy that for plane problems, which is the main subject of this
study, the volume integral in the above-mentioned equations simply trans-
forms into an area integral considering the constant unit thickness for the
plane structures.

3 Required optimal criteria

As mentioned previously, in order to achieve an optimal and efficient for-
mulation, it is possible to impose different criteria on the assumed strain
field. Two of these criteria, compatibility and equilibrium, are defined in the
previous section. In this section, two other required criteria for the optimal
performance of assumed strain elements are defined.

3.1 Pure bending test

To achieve optimal performance in flexural behavior, Felippa [18, 26] utilized
the pure bending test. In this experiment, an Euler—Bernoulli beam is dis-
cretized by rectangular (or triangular) elements and loaded by the constant
bending moments. To study in-plane bending along z and y axes, the two
beams depicted in Figures 1 and 2 are considered.

M, ’ M,

Figure 1: Pure bending test in the zy plane

The stored elastic energy due to the constant moments, M, and M,, in
part of the beams meshed with one rectangular element (or two triangular
elements) is derived according to the following relations:
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exrac 6aM12/'
Uyt = Eb3h’ (18)
2
Uea:act _ 6bMZI 19
Y " Ea3h’ (19)
X My ' M,
-Mhl(:

beam cross section

Figure 2: Pure bending test in the zy plane

Based on this test, an element can present bending behavior exactly,
provided that it can compute precise elastic stored energy. In other words,
the ratio of the energy calculated according to the results of element analysis
to the exact stored elastic energy should be equal to 1. For this purpose, the
element stored energy, based on finite element responses, is computed using
the coming equations:

1
pelment — iDg;KDbx, (20)
etemen 1
Ugtement = 2D, K Dy, (21)
In these relations, Dy, and Dy, are the nodal displacement vector of the

element and K is the element stiffness matrix. Therefore, the previously
mentioned flexural energy ratios are derived as follows:

l:]’element
T

"o = ~ezact (22)
Uelement
Y
’f’y = exact (23)
Uy t

If r, or ry is equal to 1, the element passes the pure bending test and is
able to represent exact bending behavior. If these ratios are greater or less
than 1, then the element is over-stiff or over-flexible, respectively. Moreover,
if the energy ratios are equal to 1 for any aspect ratio (a/b), then the element
is optimal in bending behavior. Finally, the element suffers from shear locking
on the condition that @ >> bresultsinr, >> 1lorifb >> aleads tor, >> 1.

To study this test for the strain-based formulation, it is required to in-
vestigate the exact strain fields of the elements under pure bending. In the
following, only the case of M, will be discussed. The same reasoning goes
for M, as well. The exact stress components of the beam subjected to the
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pure bending M, are as follows:

12M,
Oy = — bshya

Oy = 0, (24>

Toy = 0.

Therefore, the element stress field can be demonstrated by the linear function
of y for o, in the subsequent form:

0z = a1 + 02y,
oy =0, (25)

Tzy = 0.
Based on the Hook’s law, the corresponding strain field is as follows:

Ex = %+%y:ﬂl +B2y7
T Y (26)
Toy = 0.

From the previous relations, it can be concluded that a strain-based element
would surely pass the pure bending test, provided that the constant and
linear terms for the normal strains are included in the assumed strain field.

3.2 Rotational invariance

Because the finite elements may be rotated with the different angles and
be placed in various locations in the structural meshes used for the analysis
of the diverse problems, their characteristics must not change due to the
rotation. Such an element is called a rotational invariant. Assuming that
the coordinate system zy is rotated to a new form, which is indicated by
2’y’. The displacements’ components in this new coordinate system can be
related to those of the initial coordinate system by using the following simple
transformations:

v = ucos f + vsin 6, (27)
v’ = —usin @ + vcos 6. (28)

In this relation, 6 is the rotation angle from zy system to the new z’y’ coor-
dinates. Based on this relation, having the rigid body motions, uy and vy in
the original coordinate, it is possible to calculate the correct value of u(, and
vy, in the 2%y’ coordinates, by using equations (27) and (28). Regarding the
rotational invariance property, it is required to consider the strain field with
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a complete order. In other words, some incomplete interpolation polynomi-
als produce strain states that are not invariant with rotation. Therefore, the
rotational invariance can be guaranteed with the inclusion of all strain terms
with a given order. For instance, the rotational mapping of a constant strain
state is as follows:

gl = £,c08%0 +&,8in°0 +7ysinf cosb | (29)
5; = e,8in%0 +e,c08%0 —Yxysin 6 cost , (30)
Yoy = (€2 — €y)sin 20 + 7,yc0526 . (31)

Based on these relations, a strain-based element can represent the constant
strains with respect to any system of the coordinates, only on the condition
that its formulation takes into account all three cases of the constant strain
states. Although, the completeness of the assumed strain field guarantees
rotational invariance of the element, the elements with incomplete strain
fields are not necessarily rotational dependent.

4 Triangular membrane elements

To the author’s best knowledge, there are thirteen strain-based triangular el-
ements formulated by using direct strain-based formulation. In this section,
thirteen triangular membrane elements proposed based on the assumed-strain
approach are briefly reviewed. These studies are arranged in historical order.
Most of the available triangular element has similar geometry, a three-node
triangle with three degrees of freedom at each node. However, in this con-
figuration, the incorporation of the drilling degrees of freedom improves the
performance of the element in bending analysis, but more recent works uti-
lized different distribution of degrees of freedom provide better results. In
addition, as it will be demonstrated, in the most of the existing elements,
the equilibrium conditions are not imposed on the assumed strain fields. Ac-
cording to the outcomes of the more recent elements, considering the equilib-
rium conditions improve the accuracy and convergence rate of the suggested
strain-based elements. More details about these elements are provided in the
following descriptions. To facilitate understanding and reproducing of the
elements by readers, the main details are presented in a table format.

4.1 Sabir (1985)

The first researcher that utilized the assumed strain approach to develop
more powerful membrane elements is Sabir. In one of his early works, he [71]
proposed a three-node triangular element with three-degrees of freedom at



448 Rezaiee-Pajand, Gharaei-Moghaddam and Ramezani

each node. The assumed strain components satisfied the compatibility equa-
tion, but the equilibrium equations were not satisfied. The drilling degree of
freedom for the element was defined by the subsequent relation:

1 /0v Ou

Details of the element formulation are presented in Table 1.

4.2 Sabir and Sfendji (1995)

Sabir and Sfendji [72] suggested a four-node triangular element by assumption
of the linear normal strains and constant shear strain. The selected strain
field satisfied the compatibility condition, but the equilibrium equations were
not imposed on this strain field. Therefore, the strain state vector consisted
of eight independent unknown coefficients. Three nodes were located at the
vertexes of the triangle, and the fourth node was placed in the middle of one
side. Each node had two translational degrees of freedom. Consequently,
the element possessed eight degrees of freedom totally. This geometry made
the element appropriate to be used as transitional element in finite element
meshes. They compared the performance of their suggested element with
standard displacement-based element by using few simple numerical problems
[72]. Their attained results showed better performance of this triangular
strain-based element. Table 2 presents details of this element.

4.3 Tayeh (2003)

In 2003, Tayeh [75] developed new strain-based elements for analysis of the
plane structures. In contrast to the previous works by Sabir, he utilized
higher-order terms and assumed an incomplete second-order field for the
element (see Table 3). It is evident that some coefficients in this assumed
strain field are common between different strain components. Tayeh provided
no clear reason for this selection, but he stated indirectly that this strain field
was selected in order to satisfy the compatibility condition. Similar to the
element proposed by Sabir and Sfendji [72], the assumed strain field did not
satisfy equilibrium equations.
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Table 1: Details of the triangular element proposed by Sabir [71]

449

Ref | Properties

Geometry

Geometry

Strain field

£z (T,y) = (596)0 + (Ex,y)oy + (53;,1)055
ey (@,9) = (ey), + (Eya) @ + (Exy) ¥
Yy (-777 y) = ('Ya:y)o + (%cy,w)ow + ('nyﬂc)oy

e
% Strain state vec- | .S ={u, vo 7o (£2), (gy), (Vay),
Lg tor (Co)y (Ena)g (ayw)o}”
wn Nodal displace— D= {Dgi_Q Dgi_l Dgi ng_Q
ment vector D3j,1 ng D3k72 ngfl de}T
000100yx O
Strain interpola- | B, = |000010yx 0
tion matrix 00000100z+y
10-y20% ay w;yz y—;
Displacement Ne= 1012 0y2 925302 Ty %2
interpolation 001 000 —=z y v
matrix B
Geometric ma-| A = [NSi N, Nsk]l
trix

4.4 Belarbi and Bourezane (2005-first triangular

element)

As mentioned previously, most of the available triangular strain-based plane
elements have the geometry similar to the one in Table 1. In fact, many of
these elements attempted to improve the performance of element suggested
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Table 2: Details of the triangular element proposed by Sabir and Sfendji [72]

Ref | Properties Geometry
Geometry
Ex (.Z‘, y) = (EI)O + (Ew,y)oy
g Strain field gy (x,y) = (gy), + (Eya) T
ié:' Yoy (T,Y) = (’me)o
5 Strain state vec- | S ={u, v, 7o (£2), T(z—:y)o
N tor (’wa)o (€$7y)0 (Ey,m)o}
E Nodal displace— D= {DQi—l Dgi D2j—1 D2j D2k—1 ng
® | ment vector Doy Dy}t
% 000100y0
» | Strain interpola- | B, = |0000100
tion matrix 00000100
-
_ y _y
Displacement N, = 10—y a0 2 xiJz 2
interpolation _0 Lx 0yg—5 zy
matrix
Geometric ma-| A = [NSZ- Nsj N, Nsl]T
trix

by Sabir [71]. In one of these research works, Belarbi and Bourezane [9]
proposed a new element by incorporating Poisson’s ratio in the assumed
strain field. They suspected that unsatisfactory performance of the element
proposed by Sabir might be due to the existence of coupling terms in the
direct strains. Therefore, they included the Poisson’s ratio in their assumed
strain-field (see Table 4). Like the previous strain-based triangular elements,
the utilized strain field in this study satisfied the compatibility condition, but
the equilibrium equations were not considered in this formulation.
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Table 3: Details of the triangular element proposed by Tayeh [75]
Ref | Properties Geometry
Geometry Same as Table 1
x (2,y) = (€2), + (€ay)o¥y + (Ewyyy)oyfz
Strain field &y ($7 y) = (Ey)o + (Ey,z)ox - (Eﬂmyy)o%
Yy (l‘, y) = (’ywy)o + (5y,mz)om + (5y,xm)oy
2 2
—(ex), T + (€y2), 1
Strain state vector | S = {u, v, 7o T(EI)O (ey)y, (Vay)y (zy),
i~} (ava)o (EI7ZUZ/)0}
= |Nodal displace-|Same as Table 1
< |ment vector
> 2
= 000100 y O yTQ
Strain interpola- | Bs = [000010 0 =« —%
tion matrix 000001_§%x+y
10-yz04% @y 2%2—% wg —|—y?
Displacemgnt Ny=|01 2 0y z _ﬁ2_ z %-y -y
1nterPolat10n 001000 % —z 7%+y%,%,%_
matrix

Geometric matrix

Same as Table 1

4.5 Belarbi and Bourezane (2005- second triangular

element)

In 2005, Belarbi and Bourezane [10] performed another study and proposed
a triangular strain-based element with the geometry similar to their previous
work, but with a different strain field. They assumed linear variation of
normal strain with respect to the perpendicular direction for this element,
while the incomplete second-order field was assumed for shear strain. Once
again, the three-node nine-degrees of freedom geometry was considered for
this element. Further details of the element are provided in Table 5.

4.6 Rezaiee-Pajand and Yaghoobi (2014- first triangular

element)

Rezaiee-Pajand and Yaghoobi [65] proposed a five-node triangular element
with a complete linear strain field, which its geometry and details are pre-

sented in Table 6.

In the assumed strain field, there are nine strain states and three rigid
body modes, which totally become twelve strain states. The selected strain
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Table 4: Details of the first triangular element proposed by Belarbi and Bourezane [9]

Ref | Properties Geometry
Geometry Same as Table 1
Ex (xv y) = (5:6)0 + (5z,y)oy - (Ex,z)oxl_?u
_(Ey,x)omy
> | Strain field ey (z,y) = (gy), + (eya) @ — (Exa) Y F~
% _(637721)0?!1/
§ Yy (:L'a y) = (f)/ry)o + (gz,m)om + (gz,m)oy
5 |[Strain  state[S={u, vo 7o (c2), (gy), (Vay)y (Ezy),
2 vector (€y,2), (EWE)O}T
= Nodal dis- | Same as Table 1
= |placement
& | vector
A 000100 y —vo ==
Strain interpo- | Bs = |000010 —vy 2= —*
lation matrix 000001 O 0 z+vy
2 2 2 2
plsplacement Ne=101 2z 0y . = Ty =
interpolation 001 000 —r y 2y
matrix -
Geometric ma- | Same as Table 1
trix

components satisfy the compatibility requirement. In addition, Rezaiee-
Pajand and Yaghoobi enforced equilibrium conditions in this strain field.
They found that the necessary condition for satisfaction of the equilibrium
criteria is that some strain states be dependent to others. Therefore, they
selected the two dependent strain states, and as a result; ten independent
strain states remained. In agreement with the number of independent strain
states, the resulting element needs ten degrees of freedom. Rezaiee-Pajand
and Yaghoobi considered a triangular element with six nodes, as depicted in
Table 6. It is evident, four of these nodes have two translational degrees of
freedom, while the other two only have one translational degree of freedom
perpendicular to the corresponding side of the element.

The displacements of mid-side nodes, which are perpendicular to the el-
ement sides, can be connected to the displacements of the nodes in z and y
direction, by using the following relationship:

w=u-sin(a) +v-cos(a). (33)

In which, « is the angle between the degree of freedom normal to the side
and the z axis. In this case, due to the difference in the number of degrees
of freedom at the nodes, the geometrical matrix is a bit dissimilar to the
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Table 5: Details of the second triangular element proposed by Belarbi and Bourezane
[10]

Ref | Properties Geometry
Geometry Same as Table 1
Ex (x,y) = (‘gz)o + (€w,y)oy
Strain field gy (2,y) = (gy), + (Eya) T

Yy (€,9) = Vay)y + Vayae) y 22 + Vey,aa) Y
Strain  state[S ={uo, vo 1o (£2), (€y), (Vay), (Czy),

(@)

Lo

o | vector (Ey)o (Vayaa)o}”

E Nodal dis- | Same as Table 1

¢ | placement

8 vector

- 000100y0 0

5 | Strain interpo-[Bs = (00001002 0O

7 | lation matrix 00000100 a%+y?

— P4 3

= 10—yx0%1:y2—% %3

A |Displacement [Ny, = (01 z 0 Y % —% Ty 2% .
interpolation z2—y
matrlijx 001000 -z y 5
Geometric ma- [ Same as Table 1
trix

previously reviewed finite elements (see Table 6). Here, the first sub-matrices
are derived by replacing the node coordinates in the matrix N; while for
the last two sub-matrices, a different relation was utilized (see Table 6).

Despite its irregular degrees of freedom, the numerical evaluations showed
that the performance of this element is better than many of the previous
membrane elements. There are different reasons for the better performance
of this element. First, all the components of its strain field had the complete
term for a linear approximation. Moreover, the equilibrium equations are
imposed on the assumed strain field, and the independent strain states are
excluded from the strain state vector. The later property provides also the
advantage of reducing the number of degrees of freedom in the element. These
investigators realized that the geometry of the element and its node locations
also had significant effects on its performance. This influence resulted in a
new series of more accurate elements, which will be discussed in the coming
sections [58, 59, 61, 62].
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Table 6: Details of the first triangular element proposed by Rezaiee-Pajand and
Yaghoobi [65]
Ref | Properties | Geometry
Geometry

Rezaiee-Pajand and Yaghoobi [65]

A
—®x
Ex (CL‘, y) = (‘C:T)o + (5m7m)ol’ + (Eac,y)oy
Strain field ey (2, y) = (ey), + (Eyw),z + (Eyy) ¥
Yy (.T, y) = (%cy)o + ('Yzy,x)ox + ('Yzy,y)oy
Strain state | S ={u, vo 1o (2), (6y), (Vay), (Cxa), (Exy),
vector (eya), (eyw)o}”
Nodal dis- | D ={D2i—1 Da2; Dsj—1 D3zj Dox—1 Dz Dy_1 Dy
placement D,, D,}T
vector
Strain  in- | B
terpolation 000100 x Yy 0 0
matrix =1000010 0 0 T Yy
(2G+N)y A A (2G+N)z
OOOOOIfT’ —Ag — Ay — 264N
Displacement N, ;
interpola- 1 0-yz0dz % xy - (& +3) 0 ‘
tion matrix 01 2 0y 2 0 —x? (ZC + 1) Ty % — (ZG;G)‘)IZ
Geometric N Nsj Ny Ngy No, Ngn]
matrix

|:bln cos(a) xgcos(a) —ygsin(a)
zgsin (a) Yscos (a) w _ w
( _ 2G+>\ (2G+N)ys* )Sin (a)

(o) sin(0) — (12 (35+ 1) oo
(xﬁyﬁ)mb( a) - (yﬁ2 (% + %)) sin (a)
(y% - 2G+)\ (264 Nzs ) cos (a) B=m,n
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4.7 Rezaiee-Pajand and Yaghoobi (2014- second
triangular element)

In another study, Rezaiee-Pajand and Yaghoobi [66] utilized the complete
linear strain field of the previous study, but with a different element geom-
etry. In this work, they proposed a seven-node triangular element, which is
depicted in Table 7. Six of the ten required degrees of freedom were allo-
cated at the vertex nodes, which had two translational degrees of freedom
each. Three mid-side nodes had only one translational degrees of freedom
perpendicular to their sides, and the last degree of freedom was a drilling one
at the center node. The first three sub-matrices for nodes 4, j, and k of the
geometric matrix, A, are derived by replacing the coordinates of these nodes
in the displacement interpolation matrix. For the three mid-side nodes, the
respective sub-matrix is computed by using the equation given in Table 6
for Nyg. Finally, the last sub-matrix, IN,,, is derived from the next equality
presented in the last row of Table 7, after the geometric matrix. The authors
developed this formulation for geometrical nonlinear analysis of plane struc-
tures. For this purpose, they took advantage of the co-rotational formulation
[54, 3]. For this purpose, a local coordinate system, which its origin was
located at the center of the element, was considered. This coordinate system
translates and rotates with the element. Then, the element was formulated
in this new system. Since the nonlinear analysis was not in the scope of this
study, for further information about the co-rotational formulation, one can
refer to references [54, 66].

4.8 Rebiai (2018)

In a more recent attempt to propose three-node nine-degree of freedom trian-
gular element, Rebiai [48] suggested a new strain-based element with incom-
plete second-order strain field. This strain field satisfies the compatibility
condition, but the equilibrium conditions were not fulfilled within the ele-
ment. In fact, Rebiai did not intend to impose the equilibrium equations,
(Please see Table 8).

4.9 Rezaiee-Pajand, Gharaei-Moghaddam, and
Ramezani (2019- first triangular element)

In one of the most-recent studies, Rezaiee-Pajand, Gharaei-Moghaddam, and
Ramezani [58] suggested new triangular elements. They utilized the complete
linear strain field, which was the same as the previous studies by Rezaiee-
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Table 7: Details of the second triangular element proposed by Rezaiee-Pajand and
Yaghoobi [66]

Ref

Properties

Geometry

Rezaiee-Pajand and Yaghoobi [66]

Geometry

L x

Strain field

Same as Table 6

Strain state
vector

Same as Table 6

Nodal dis- D= {Dgi_l DQi D2j_1 D2j D2k—1 ng Dl
placement D,, D, D,}T
vector
Strain  in- | Same as Table 6
terpolation
matrix
Displacement| Same as Table 6
interpola-
tion matrix
Geometric | A= [Ny Noj Nop Nap Nog Noy Ny ]’
matrix
o (2G+N)y
Ngp=10 0 1 0 0 0 =g~
_(2G+Nz,  (2G+N)y, . (2G+N)zp
2G 2G 2G

Pajand and Yaghoobi [65, 66]. Moreover, they also imposed the equilibrium
condition to specify the dependent strain states. The differences between
these new elements and previous ones are in the geometry of the elements.
In their first element, the authors assumed a five-node triangular element,
with three vertex and two mid-side nodes (see Table 9). Each node has two
translational degrees of freedom.

As mentioned previously, it has been proved through extensive investi-
gations, that configuration of the nodes and distribution of the degrees of
freedom have been influential in the performance of the resulting elements
[65, 66]. Numerical studies showed that the last presented element provided
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Table 8: Details of the triangular element proposed by Rebiai [48]

Ref | Properties Geometry

Geometry Same as Table 1
ex (2,9) = (e2), + (€a,y) ¥ + (2,yy) o ¥°
Strain field ey (@) = (8y), + (ey,a) @ + (Ez,yy) &>

g Yoy (T, Y) = (Yay), + 2(51,yy)0x2 + 2(517?!9)092 + 4(ea,yy) ,TY
E Strain state | S ={uo vo 1o (€2), (ey), (Vay)p (Ez,w), (Ey.z),
& | vector (Ceyy) 3T
é Nodal  dis- | Same as Table 1
placement
vector
000100y0 42
Strain inter- | Bs = [0000100x  z?
polation ma- 00000100 2(x+y)?
trix )
10-yxz0% axy 7% %+zy2
Displacement Na=1012 0y LT gy 2% + yz?
lnterpolatlon 001000 —z y 22 — g2
matrix -
Geometric Same as Table 1
matrix

very accurate responses, especially for the elements under the bending loads.
Something that might be questionable about the geometry of this element
was the arbitrariness in the selection of the sides with mid nodes. To show
that this selection did not have considerable effect on the performance of the
element, the authors solved a numerical example with different locations of
the mid-side nodes, and the results were identical. Moreover, the main idea
behind this selection was to produce a powerful finite element for transitional
purposes. To demonstrate this fact, Rezaiee-Pajand, Gharaei-Moghaddam,
and Ramezani [58] investigated the performance of this element as a transi-
tional element in numerical example and compared its behavior with standard
displacement-based transitional elements. The results showed superiority of
the mentioned element.

4.10 Rezaiee-Pajand, Gharaei-Moghaddam, and
Ramezani (2019- second triangular element)

After presenting the previous element, Rezaiee-Pajand, Gharaei-Moghaddam,
and Ramezani [58] considered another configuration for the complete linear
strain field. In this element, the authors considered the well-known three node
nine-degree of freedom triangular element and added an internal node with
one translational degree of freedom in an arbitrary direction. This element
geometry is demonstrated in Table 10. By using (33), the displacement of the
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Table 9: Details of the first triangular element proposed by Rezaiee-Pajand, Gharaei-
Moghaddam, and Ramezani [58]

Ref | Properties | Geometry
Geometry
=Dy
v
=
0,
g
5
g
o] x
E
&b Strain field | Same as Table 6
= Strain state | Same as Table 6
'§ vector
z Nodal dis- | D = {DQi—l Dy; D2j—1 D2j Dok—1 Do, Do—1 Dy
5 placement Dap1 Dom}T
—g vector
@ 000100 T y 0 0
g Strain in- | B,= |000010 0 0 = y
E terpqlation 000001 ,% ,%x *%y _ (QGg)\)m
X matrix
-% Displacement N i
g interpola- _|10-yz0}% £ _ QG Ty -2 (&5 +1) . 0 .
tion matrix 01 2 0y2 0 -2 (& +3) Ty Y — Gorie
Geometric A= [Nsi Nsj Ngi Ny NS,,,JI
matrix

internal node can be connected to the displacements in x and y directions.
The internal node of the element can be removed by the static condensation
approach, and therefore, the element becomes a three-node nine-degrees of
freedom triangular element, which is a common element in general finite el-
ement programs. This element provided surprisingly accurate results under
different types of loading and especially shear loading, in which many of the
available elements failed to provide the exact response in the case of distorted
mesh [58]. In addition to the fast convergence and high accuracy, this ele-
ment was highly insensitive to the mesh distortion. Numerical examinations
demonstrated that the direction of internal degree of freedom did not have
any noticeable effect on the accuracy and performance of the element [58].
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Table 10: Details of the second triangular element proposed by Rezaiee-Pajand,
Gharaei-Moghaddam, and Ramezani [58]

Ref | Properties Geometry

Geometry

| o> Dyz
\ ')Dau

e X

9" | Strain field | Same as Table 6
E Strain state | Same as Table 6
= vector
T | Nodal dis- | D={Doi-1 Dz Dzj-1 Daj Dox1 Do D1 Dy
% | placement | Doy—1 Doy }T
Eo vector
@ 000100 T Y 0 0
g Strain in- | Bs={000010 0 0 T y
< ati QG+Ny A Dy 2G+Mz
3 terpglatlon 000001 —EE22 Ay Ay pe
= matrix
8 Displacement Ng

1 P 2 Y 2 —
E|imtemola | rooya0 -0t auy pGhed) 0
E 1o MANX =101 25 0 ys % 0 (1) wpys 2 - QG
T 001 00 0 (2G+Nys _ (2G+N)zs (2G+Nys _ (2G+Mzp
8 e 2G 2G 2G 2G -
‘B B =4) k
N N T
CEO Geometric A= [Nsi Ni; Nsi Nsl}

matrix

Ny = |sin(a) cos(a) axcos(a) —ysin(a) asin(a)  ycos (a)
-mco;(a) _ ytsig(a) (%2 _ (2G;ré)yz2> sin (a)

+3)) cos (a)
+ 3)) sin (a)

(zu)sin (a) — (z% (
(z1y1) cos (a) — (y12 (2

2 2
(% — 7(2(;;%)“” ) cos (a)

S8

4.11 Rezaiee-Pajand, Gharaei-Moghaddam, and
Ramezani (2019- third triangular element)

In another study, Rezaiee-Pajand, Gharaei-Moghaddam, and Ramezani [59]
formulated a higher-order strain-based assuming complete second-order nor-
mal strains and linear shear strains (see Table 11). After imposing the equi-
librium and compatibility conditions on the assumed strain field, seven de-
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pendent strain states were excluded and eleven independent strain states
remained.

Table 11: Details of the third triangular element proposed by Rezaiee-Pajand,
Gharaei-Moghaddam, and Ramezani [59]

Ref | Properties | Geometry
Geometry

&2 (@) = (20)y + (€2) @ + (E2) ¥ + (Eva), (5)
el (o) + Eou), ()

gy (T,Y) = (8y), + (Eya) ) + (Eyy) ¥ + (y.2a), (:>
H(eyay), (@Y) + (eypy), (%)

Yy ('/Ev y) = (rwa)u + ('\/LyL)O‘L + (rylﬂy,y)oy

Strain state | S ={uo vo 70 (e2), (8y), (Vay)y (Cvz), (Ex), (Eya),
vector (eyw), (5z,yy)o}T

Nodal dis- | D ={D2i—1 Dai Daj—1 Daj Dop—1 Do D; Dp D,y
placement Doy D2p}T

Strain field

Rezaiee-Pajand et al. [59]

vector
Strain  in- | By
Iﬁrrtplation 000100 = y 0 0 §2+ 2(2*5%)
atrix 000010 0 0 = y 5t mem
0000017(2(;;:»1, Yy 7(2(1‘2;)\),1 0
Displacement Ny
interpola- _ [1 0—ya0l D —CER2 ) (G 0 ’ %S(ZG*M) + ‘”gf}
tion matrix 01z 0ye 0 —a2(42)  ay % - 7&(;;}?)11 7%(25;,\) + ygl
Geometric | A= [Ny Nyj Nog Tuy Tory Tony Noo
matrix T, = [0 01000 (26245\)y _(26‘24(—;)\)3; (2G;g\)y _(2G;E;A)w _my]

The selected geometry of the element is demonstrated in Table 11. As it
can be seen, the element had seven nodes and eleven degrees of freedom in
agreement with the independent strain states.
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4.12 Rezaiee-Pajand, Gharaei-Moghaddam, and
Ramezani (2020- fourth triangular element)

Rezaiee-Pajand, Gharaei-Moghaddam, and Ramezani [61] utilized the as-
sumed strain of their previous study [59] to formulate another higher-order
strain-based element. The difference of this element with the previous one is
the geometry of the element, which is demonstrated in Table 12.

Table 12: Details of the fourth triangular element proposed by Rezaiee-Pajand,
Gharaei-Moghaddam, and Ramezani [61]

Ref | Properties
Geometry

[61]

Strain Same as Table 11
field
Strain Same as Table 11
state
vector
Nodal dis- D= {D3i72 D3i71 Dgz‘ D3j72 D3j71 Dgz D3k72
placement | Dsz_1 Dsr Doy_1 Do }T

vector
Strain Same as Table 11
interpo-
lation
matrix
Displacement Same as Table 11
interpo-
lation
matrix
Geometric | Ag = [Ny Tu; Nuj Toj Nog Tog Nog N Ny N
matrix

Rezaiee-Pajand et al.
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4.13 Rezaiee-Pajand, Ramezani, and Gharaei-
Moghaddam (2020- fifth triangular element)

Since it was expected that using higher-order strain fields improves the accu-
racy of the elements, Rezaiee-Pajand, Ramezani, and Gharaei-Moghaddam
[62] formulated a seven-node triangular element using complete second-order
strain field (see Table 13). In this element formulation, the compatibility and
equilibrium conditions were again satisfied.

Table 13: Details of the fifth triangular element proposed by Rezaiee-Pajand,
Ramezani, and Gharaei-Moghaddam [62]

Ref | Properties
Geometry

)

0
ey (2,y) = (gy), + (ey,2) T + (Eyy) ¥ + (Eyaa), (%)
(

& | Strain field 2
= +(eyay), (2y) + (Eyy), 7)
= . 22
s Vay (x7 y) - (ny)o + (711/,@)0$ + (’me,y)oy + (’yzy>x1)0 (7)
2
g Yy
g “F(A/wy,:lzy)o (Ty) + (,Y"”yﬂyy)o ( 5 )
£ Nodal dis- [ D={Dzi—1 Dz Dsyj-1 Dzj Da-1 Do Da-y Dy
T
- placement Dom—1 Doy Doy—1 D2y Dip—1 Dapt
% vector
B Strain in- | By
. 2 P
k= terpolation 000100 = y 0 0 %L— %Z_ A 0
3 = . Gy
matrix 000010 0 2 =y =) » .
] 000001 Ky 2y 2y Ko oy ke o

Displacement N,

i 10 unl)’i—’““\’ vy —(%H) 0 (ER) yER)

lntcrpola- LH v 0yd 2SRy gy Lo e ‘1( o u(w

2G 2 2G 6(2G+A) 2

tion matrix

Geometric | Ag = [Nei Noj Nop Ny Nopy Nop Noo]”
matrix
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5 Quadrilateral membrane elements

The existing quadrilateral strain-based membrane elements are reviewed in
this section. In contrast with the triangular elements, which are mostly
developed by the assumption of linear or second-order strain-field, higher-
order strain fields were utilized in the formulation of quadrilateral elements.
In the quadrilateral elements, there are two common configurations. The
first one is a four-node twelve-degrees of freedom quadrilateral element, and
the second common geometry is a five-node ten-degrees of freedom element.
More details are provided in the following.

5.1 Sabir and Sfendji (1995)

Like the triangular elements, the first quadrilateral element is proposed by
Sabir [72]. In 1995, Sabir and Sfendji suggested a rectangular strain-based
finite element with linear strain field.

Once again, they assumed strain components satisfy compatibility con-
dition, but the equilibrium equations are not fulfilled. Due to the existence
of ten strain states, ten degrees of freedom are required. Therefore, Sabir
and Sfendji considered the five-node rectangular element depicted in Table
15. Each node of this element has two translational degrees of freedom.

5.2 Tayeh (2003)

Another rectangular element was proposed by Tayeh [75]. He utilized an
incomplete fourth-order approximation for normal strains and incomplete
second-order assumption for the shear strain (see Table 15).

In agreement with these twelve strain states, a four-node rectangular ele-
ment with three degrees of freedom at each node was considered. It should be
noted that this element and the previous one proposed by Sabir and Sfendji
had rectangular geometry, according to the original articles [72, 75], but
based on the basics of strain- formulation, the effect of the geometry only
entered in geometric matrix, A. So, by using the nodes of a general quadri-
lateral shape in construction of this matrix; the mentioned elements can have
a general quadrilateral geometry.
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Table 14: Details of the Rectangular element proposed by Sabir and Sfendji [72]
Ref | Properties
Geometry

 mm—

E Strain field | Same as Table 2
; Strainstate | S ={uo vo 7o (2), (€4), (Vay)y, (€xyw)y (€y),
S | vector (ay)o  (Vayy)o)”
%) Nodal dis- | D ={Dsi—1 D2 Dsj—1 Dsj Dat_1 Doy Doy
. placement Doy Doyt Do }T
I~ vector
'E 000100y000
3 Strain in- | By= 0000100200

terpolation 00000100xy

matrix )

2 z
Displacement N = 10—y 0 % MIQ 2J 02 %
interpola- 01z 0y 3 —% oy 5= 0

tion matrix
Geometric | A= [Ny; Ns;j Ny Ny NSm]l
matrix

5.3 Belarbi and Maalem (2005)

In 2005, Belarbi and Maalem [12] suggested an improved strain-based rect-
angular element by the assumption of linear normal strains and constant
shear strain. The element geometry and distribution of nodes and degrees of
freedom are the one proposed by Sabir and Sfendji.
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Table 15: Details of the Rectangular element proposed by Tayeh [75]

465

Ref | Properties

Geometry

Strain field

€2 (2,Y) = (e2), + (€0),¥ + (Ex,uy)Y° + (Exoyyy) ,2Y°

Ey (:U,y) = (Ey)o =+ (5y,x)0x - (5ac,yy)ox2 - (5z¢xyyy)gyxd
e

Yy (*T> y) = ("/zy)o + (sz,x)om + (’Yzy,y)oy - (Ez,y)07

2
_(Ey,z)o%

Strain state

Tayeh [75]

S={uo vo 1o (), (&y)y (Vay), (;ﬂcy)o (eya),

vector (ALuya)y (Vay), (Eown)y  (Ezayyy)o)
Nodal dis- | D = {DSi—Q D31 Ds; D3j72 DS]’—I DSj D3
placement | Dsp_y Ds, Dsj—y Ds—y Ds}"
vector
Strain  in- | By ‘
terpolation (000100 y 0 00 ¢* axy?
matrix — (000010 0 =z 00—22—2%
2 2

1000001 —-% % zy 0O 0
Displacement Ny
. r 3 2 2 2,3
11.1terpola-‘ 10-yz0¥ 3xy ] ,%,% 02 w zy? zzzz
tion matrix | = | g1 Oy%—%—z Ty 2 2 x

2 2 3
(00 1000 -2 —p 24y & 3 _9py 30u

Geometric
matrix

A= [Ny Nyj N Ny

5.4 Rezaiee-Pajand and Yaghoobi (2012- first
quadrilateral element)

The first strain-based generalized quadrilateral plane element, which its strain
field satisfies both compatibility and equilibrium conditions, is proposed by
Rezaiee-Pajand and Yaghoobi [63]. They [65, 66] took advantage of the lin-
ear strain field that they had used for development of triangular elements
(see Table 6 ). After imposing the equilibrium criteria and determination
of dependent strain states, ten independent strain states remain for the re-
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Table 16: Details of the Rectangular element proposed by Belarbi and Maalem [12]
Ref | Properties
Geometry Same as Table 14

€z (2,y) = (€2) , + (ay) oy + (x,2) T

§ Strain field ey (2,y) = (ey), + (ey,2), T + (Ey,y) ¥
g Yey (2, ) = ('Yzy)o
% Strain state | S ={uo vo 1o (€2), (ey), (Vzy)p (Ez,), (z,2),
CEG vector (eya)y (Eyw) )}
- Nodal  dis- | Same as Table 14
g placement
s vector ]
=] 000100yx00
% |Strain inter- | B, = 000010002:4
polation ma- 0000010000
trix )
1:2 ]
Displacement | Ns = 10-yz 03 xy2 Ty 02J
interpolation 01 2 0y 3 —% 0 ay %
matrix
Geometric Same as Table 14
matrix

quired ten degrees of freedom. Rezaiee-Pajand and Yaghoobi considered the
generalized five-node quadrilateral element, which is depicted in Table 17.

In another study, Rezaiee-Pajand and Yaghoobi [64] investigated the per-
formance of two special rectangular variants of the generalized quadrilateral
element. In the first element, the fifth node was located in its center, while
this node was moved to the middle of one side in the next element. In this
study, they showed that these strain-based elements were less sensitive to
mesh distortion in comparison with their displacement-based counterparts.
Moreover, they displayed that strain-based elements were completely free
from shear parasitic errors.

5.5 Rebiai and Belounar (2013- first quadrilateral
element)

A four-node rectangular strain-based element with incomplete fourth-order
normal strains was proposed by Rebiai and Belounar [49]. The authors as-
sumed linear shear strains for this element. This strain field, had twelve
independent strain states. Regarding this field, it seems that there was no
clear and rational basis behind this selection. Therefore, this field was prob-
ably the result of the trial-and-error process to attain the best performance
of the resulting element. Rebiai and Belounar developed this element for ax-
isymmetric, as well as, elastoplastic analysis of structures. For the nonlinear
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Table 17: Details of the first quadrilateral element proposed by Rezaiee-Pajand and
Yaghoobi [63]

Ref | Properties Geometry

Geometry

——»x

Strain field | Same as Table 6
Strain state | Same as Table 6
vector
Nodal dis- | D = {D2i—1 D,; D2j—1 D2j Dop—1 Doy Dy_y
placement Dy Dop1 ng}T

vector
Strain in- | Same as Table 6
terpolation
matrix
Displacement Same as Table 6
interpola-
tion matrix
Geometric | A={Ny;; N,; Ny Ny Ny}’
matrix

Rezaiee-Pajand and Yaghoobi [63]

analysis, they took advantage of the Mohr—Coulomb yield criteria and the
initial stress and strain methods [49]. They showed that the strain-based
elements provided reliable and accurate results in nonlinear problems.

5.6 Rebiai and Belounar (2014- second quadrilateral
element)

In another research work, Rebiai and Belounar suggested another variant of
their previous element [50]. In this new element, they considered the strain
field of their previous study [50], but added new linear term to the shear
strain and changed the dependent term of the normal strains.
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Table 18: Details of the first quadrilateral element proposed by Rebiai and Belounar
[49]

Ref Properties
Geometry

Dy
A

Sk
Dy — Dy

Ex (1‘7 y) = (595)0 + (Ez,y)oy + (ez,z)ox + (ez,yy)on
+2(Ewwyy’y)oxy3
gy (z,y) = (8y), + (€2,2),®
Strain field +2 (eyy) ¥ — (Exyy) 22
_2(5z,xyyy)oyx3
VYay (37: y) =2 (’ny)o + Q(Sx,y)ox + Q(Ez,z)oy +2 (Ey,y)oy
+2(€x,yy) Y = 2(Ex,yy) 0T + 2 (Vay,2) 2
Strainstate | S={uo vo 7o (2), (gy), (Vay)y (C2y)y (C2a),
vector (Cuw)y Toya)y (Eopy)s (Ewaypy)y”
Nodal dis- | D = {DSFQ D31 Ds; D3j72 DS]’—I D3j D32
placement | Dsj—1 Dsx Dsi—a Ds—y Ds3}T
vector

Rebiai and Belounar [49]

[000100y = 0 0 o2 2xy°
Strain in- | Bs= (000010 0 z 2y 0 —xz2 —2z%

terpolation 0000022z 2y2y2x2y—2x O

matrix

Displacement N,

. 2 2

interpola- 10 —yz0yay T2 42 0 ay® + 42 2293

tion matrix 2 2

= 0131:0y:/v%2 zy y? 2?2 —2?y—=2 —23y
0010000 0 —yax—x—y-— 2wy —3z%y?

Geometric A= [Nsl- Nsj Ny, NSJ T

matrix

Similar to their previous study, Rebiai and Belounar utilized this element
for both linear and materially nonlinear analysis. In their numerical evalua-
tions, they included different yield criteria, such as, Tresca, Von Mises and
Mohr-Coulomb. Once more, the attained results demonstrated the superi-
ority of strain formulation in comparison with classical displacement-based
elements.
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Table 19: Details of the second quadrilateral element proposed by Rebiai and Belounar

[50]

Ref Properties

Geometry Same as Table 18

€2 (2,Y) = (€2)y + (Ea,y) ¥ + (€),2 + (€a,yy)¥°
+2(ex,2yy),2Y°

Strain field gy (@,y) = (gy), + (Eyw), @ + (Eyy) Y — (811;,?}:”)()@2

=) ;

% *2(57c~acyyy)oygv5

§ Vxy (32', Z/) =2 (’Yzy)o + [2(7zy)o + 2(5y,z)o + (ey,y)o]y

% +2[(5z,y)o + (5;1,/)0 + (’wa,z)o]x

M Strain state | S ={uo, vo 7o (e2), (€y); (Vay)y, (Ezy), (Eyz),
= vector (Ey,y)o ('wa,w)o (Efl:,yy)o (E:E,:I;yyy)o}T

= Nodal dis- | Same as Table 18

fg placement

° vector

0001z O y 000 32 2x°
Strain in- | Bs= 0000 1 0 0 zy 0 —22—-22%

terpolation 0000222y +22zx2yy2x O 0

matrix

Displacement Ng

iI'ItCTPOIa-. 10-yz L; v +y zy % % 0 zy? 2%

tion matrix | = | 51 , 0224y a % zy % 2% —z2y —ady?
0010 = -y 0 0 —% z —2zy —3z%y°

Geometric Same as Table 18

matrix

5.7 Rebiai, Saidani, and Bahloul (2015- Third
quadrilateral element)

In the following of his previous researches, Rebiai, Saidani, and Bahloul [51]
suggested another strain-based quadrilateral element for linear dynamic anal-
ysis of the plane problems. They utilized the general form of the strain field,
which was used in their previous studies, but with slight modifications (see
Table 20). The element geometry and its strain state and nodal displace-
ment vectors were similar to the previous element proposed by Rebiai and
Belounar [50]. The difference between these two membrane elements was in
their strain and displacement interpolation matrices. Application of this new
element for dynamic analysis of the plane problems proved acceptable accu-
racy of the assumed strain method for the dynamic problems. They utilized
the lumped mass matrix for the element.



470 Rezaiee-Pajand, Gharaei-Moghaddam and Ramezani

Table 20: Details of the quadrilateral element proposed by Rebiai, Saidani, and Bahloul

51

| I]{ef Properties

Geometry | Same as Table 18

o (2,y) = (€2), + (gy), + (Eny) ¥ + (€y) 2 + (Em-,yy)on
+2(ez,ayyy) oY

ey (x,y) = (Ey)o + (6y,2) 0T + (€y,9) Y — (Ez,yy) T

2
Strain

5 field _2(5z¢wyyy)o?ﬁ3
= Yay (2,Y) =2 (Yay), + [Z(Wy)o +2(ey ), + (53/9)0] Y
i +2 [(5:t,y)o + (Ey)o + ('me,m)o] L
3 Strain S={uo vo 1o (2), (&y), (Vay), (xy), (Eya),
< T
é state () (Vaya)y (Ezyy)y (Ezayyy)o)
vector
Nodal dis- | Same as Table 18
placement
vector
000lz+1 0 3 000 g2 2zy°
Strain B,=|0000 1 0 0 2y 0 —2%2-22%
interpo- 10000 2z 2y+2222yy2x O 0
lation
matrix
10—yx§+xy2+ymg2;% % 0 zy? 2?3
Displacementh =101 2 022+y 2 L ay L 2? —a?y —ady?
interpo- 0010 = -y 0 0 —% 2 —2zy —3a%y?
lation -
matrix
Geometric | Same as Table 18
matrix

5.8 Rezaiee-Pajand and Yaghoobi (2015- fourth
quadrilateral element)

In most of these formulations, there is no rational basis for the selection of
the assumed strain field. However, Rezaiee-Pajand and his colleagues pro-
posed application of the concept of Taylor expansion for this purpose. In an
attempt to develop second order strain-based elements, Rezaiee-Pajand and
Yaghoobi [67] suggested the complete second-order strain field (see Table 21).
Excluding these dependent coeflicients from the total strain states, fourteen
independent strain states were remained. Accordingly, in this element, the
four vertex nodes had three degrees of freedom, namely two displacement and
one in-plane rotation, and the internal node had two translational degrees of
freedom.
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5.9 Rezaiee-Pajand and Yaghoobi (2015- fifth
quadrilateral element)

Rezaiee-Pajand and Yaghoobi also proposed another second-order element, in
which the assumed strain field was the same as the one presented in Table 21.
In addition, the equilibrium criteria were imposed only on the linear terms
of the strain components [67]. Therefore, only two strain states were charac-
terized as dependent ones, and eighteen independent strain states remained.
To generate an element with eighteen degrees of freedom, they considered a
nine-node generalized quadrilateral element, which is demonstrated in Table
22. Each node of this element had two translational degrees of freedom.

5.10 Hamadi, Ayoub, and Maalem (2016)

In 2016, Hamadi, Ayoub, and Maalem [31] independently proposed a new
quadrilateral finite element. This element is indeed the same as the element
previously proposed by Rezaiee-Pajand and Yaghoobi [63], restricted to rect-
angular shapes.

5.11 Rezaiee-Pajand and Yaghoobi (2018- sixth
quadrilateral elements)

In order to analyze geometrically nonlinear plane structures, Rezaiee-Pajand
and Yaghoobi [63] modified their five-node quadrilateral element by the co-
rotational approach [70]. Their findings showed that the strain-based for-
mulation can provide accurate results for geometrically nonlinear analysis
of structures. Besides, it did not show any sensitivity to the aspect ratio
and mesh distortion. To sum up, the summary of the reviewed elements is
presented in Table 23.

6 Other types of strain-based elements

Since the focus of the present study is on the membrane elements, only the
available strain-based elements were reviewed in the previous sections. How-
ever, the advantages of strain formulation persuade researchers to have taken
advantage of this approach in the development of finite elements for other
types of structures. In order to provide a brief introduction to the appli-
cation of assumed strain technique for the proposition of the different finite
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Table 21: Details of the fourth quadrilateral element proposed by Rezaiee-Pajand
and Yaghoobi [67]

Ref Properties
Geometry

Baeay

ez (2, y) = (e ) + (g2 T) T+ (&, y)gy + (Ew,ww)omz
F(Eaay) Y + (Cxyy) 5
(ey

N

Strain field €y (z,y) = (Ey)o g L) ot (Ey,y)gy + (Eu,u) 12

+(ey,ay) o2y + (Eyuy) 5 )
’Y:py (‘T7 y) = (me‘/)o + (FY-'E.U,I)OI + (7’“]71/) + ('Yzy,;r:r)a%
+(Eazy + Eyaa),TY + (%y,yy)o%
Strain state | S ={uo v, 7o (€a), (Ey)n (’ny)n (EWC)D (Exy)f?

vector (eya)y (Cyw)y (Exwy)y (Eawy)y (Eyay)y (Eyas),}
Nodal dis- | D ={Dsj_2 Dsi—1 Ds; Dsj_o Dsj_1 Ds; Dsp_o
placement | Dsx_1 Dz Dsi—o Dsi—1 D3 Doy Dop}T

Rezaiee-Pajand and Yaghoobi [67]

vector

Strain  in- | B

terpolation | _[000100 w w00 e E gl 0 e

matrix 000001 268y 2y 2y ”:—ﬂa gt - AR o bt yzfé*fz R

Displacement N,

interpola- [‘” TROARERY R e R e )
01z 0y% “GRa oy G -2 -G ey - B B - sy

tion matrix

Geometric | A= [N Ts; Nsj Ts; Nsp Tsp, Nsp Ty Ns,n}

matrix T,=[001000 zgg*y ; - ’gg* 4 2y 20y _2QHA (7 —a?) Y 2T (a? — ) ]

elements, a short review of the other works is presented in this section. Need-
less to say, for more details, it is necessary to refer to the original references,
which are cited in the following paragraphs.

In the case of plate bending analysis, Belounar and Guenfoud [15] pro-
posed a four-node rectangular plate element by assumption of linear curva-
ture and second-order shear strains. The assumed strain field for the element
only satisfies the compatibility condition. They showed that this element is
more efficient than the corresponding displacement-based element. In 2014,
Hamadi et al. [30] developed a rectangular element for plate bending anal-
ysis, based on the Kirchhoff theory, and compared its performance with the
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Table 22: Details of the fifth element proposed by Rezaiee-Pajand and Yaghoobi [67]

Ref Properties

Geometry

Strain field Same as Table 21

=
L. [Strain state [S={uo vo 7o (e2), (ey)y (Vay), (a,a),
< | vector (tey)y (eya)y (Byy)y (Ezea), (Czay), r
S (Cowy)y  (eyaa)y (eyay)y (Eyyy)y (Yoyaz)y (Yaywy)o)
% Nodal dis- | D = {Dzifl DQZ‘ D2j71 ng D2k71
z placement Doy, Doy—1 Dy Dam—1 Dom Dap—1 Doy
% vector D2p71 Dgp D2q71 ng Dgrfl DQT}T
~ |Strain inter- | Bs
. \ 2
5 | polation ma- 000100 =z y 0 0 Zay% 000 0 0
. . 2
E trix =|o00010 0 0 y 000 Zay¥ 0 0
- 2 2
$ . 000001 =-2CFA, Az Ay 2080, 0 0 ayay 0 0 2 ¥
= Displacement | Ng
N 3 H 2
r:qé interpolation _l10-yzo0 % % _ 262¥§)\y2 oy 0— G2+G>\yz
matrix - x G+, 2
01 2 Oy 35 0 DTeR Ty
3 2 2 3 3
0 Emruo Loo0n
ﬁ72G+>\x2 0 713 0 :c2y ny ﬁ ﬁ 0
2 2G 6 2 2 6 6 }
Geometric | A= [Ns; Ns; Ns, Ns; Ns,, Ns, Ns, Ns, Ns,]
matrix

displacement-based formulation. They showed the superiority of strain-based
formulation in removing the shear locking problem. Another thin plate el-
ement, based on assumed strain approach, is proposed by Abderrahmani,

Maalam, and Hamadi [1].

In this study, they utilized higher-order strain

field in comparison with the previous elements. In another study, Abder-
rahmani et al. [2] formulated a new strain-based sector element for linear
analysis of circular thin plates in 2017. Many years before this study, an-
other sector strain-based element was proposed by Belarbi and Charif [11].
In 2018, the first triangular plate element, based on assumed strain approach,
is proposed by Belounar, Benmebarek, and Belounar [14]. In this study, the
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Table 23:  Summary of the existing strain-based plane elements reviewed in this article

Numbgr Numbgr Other
No. | Element, Geometry of of Assumed strain field Drilling -
features
node: dof
Normal Shear Optimal
strain strain criteria
1 Sabir [71] Triangular 3 9 Complete Complete Compatibility| yes -
linear linear
2 [ Sabir and Sfendji | Triangular | 4 3 Tncomplete | constant “ompatibility| no Can be used as
172 linear transitional ele-
ment
3 Tayeh [75] Triangular 3 9 Incomplete Incomplete Compatibility| yes -
second-order | second-order
4 Belarbi and | Triangular 3 9 Complete Incomplete Compatibility| yes Poisson’s ratio is
Bourezane [9] linear linear included in the
element
5 |Belarbi  and | Triangular | 3 9 Tncomplete | Incomplete | Compatibility| 3 B
Bourezane [10] linear second-order
6 Rezaice- Triangular 6 10 Complete Complete Compatibility| no Can be used as
and Ve linear linear Equilibrium transitional ele-
[65] ment
7 | Rezaice Pajand | Triangular | 7 0 Complete Complete Compatibility E
and  Yaghoobi linear linear Equilibrium
[66]
8 Rebiai [48] Triangular 3 9 Incomplete Complete Compatibility| yes -
second-order | second-order
9 | Rezaice-Pajand, | Triangular | 5 10 Complete Complete Compatibility| no Can be used as
Gharaei- linear linear Equilibrium transitional ele-
Moghaddam, ment
and  Ramezani
58]
10 | Rezaiee-Pajand, | Triangular 4 10 Complete Complete Compatibility| yes -
Gharaei- linear linear Equilibrium
Moghaddam,
and  Ramezani
5]
T1 | Rezaice-Pajand, | Triangular | 7 11 Complete Complete Compatibility| yes |-
Gharaei- second-order | linear Equilibrium
Moghaddam,
and  Ramezani
12 o Triangular | 4 11 Complete Complete Compatibility| yes N
Gharaei- second-order | linear Equilibrium
Moghaddam,
and  Ramezani
[61]
13 | Rezaiee-Pajand, | Triangular 7 14 Complete Complete Compatibility| yes -
Ramezani, second-order | second-order | Equilibrium
and Gharaei-
Moghaddam
62
T4 | Sabir and Sfendji | Rectangular | 5 0 Complete Complete - no E
[72) linear linear
15 | Tayeh [75] Rectangular |4 12 Incomplete Incomplete ves -
fourth-order | second-order
16 | Belarbi and | Rectangular | 5 10 Complete Constant -
Maalem [12] linear
17 | RezaicePajand | Quadrilateral | 5 0 Complete Complete Compatibility| no E
and  Yaghoobi linear linear Equilibrium
63]
18 | Rezaiee-Pajand | Rectangular |5 10 Complete Complete Compatibility| no -
and  Yaghoobi linear linear Equilibrium
164]
19 | RezaicePajand | Rectangular | 5 0 Complete Complete Compatibility| no Can be used as
and  Yaghoobi linear linear Equilibrium transitional ele-
[64] ment
20 | Rebiai and Be- | Quadrilateral | 4 12 Incomplete Complete Compatibility| yes -
lounar [49] fourth-order | linear
21 Quadrilateral | 4 12 Tncomplete | Complete Compatibility| yes -
] fourth-order | linear
22 | Rebiai, Saidani, | Quadrilateral | 4 2 Tncomplete | Complete Compatibility| y N
and Bahloul [51 fourth-order | linear
23 | Rezaiee-Pajand | Quadrilateral | 5 14 Complete Complete Compatibility| yes -
and  Yaghoobi second-order | second-order | Equilibrium
167]
24 | Rezaice Pajand | Quadrilateral | 9 8 Complete Complete Compatibility| yes |-
and  Yaghoobi second-order | second-order
67]
25 | Hamadi, Ayoub, | Rectangular |5 10 Complete Complete Compatibility| no
and Maalem [31] linear linear Equilibrium

authors took an advantage of linear strain components and evaluated the
performance of this element in analysis of both thin and thick planes.
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One of the first applications of the strain formulation in finite element
analysis dates back to 1972 when Ashwell and Sabir [7] proposed a rectangu-
lar cylindrical shell element. Later, in 2004, Djoudi and Bahai [24] developed
a strain-based shell element, which included openings and cut-outs. They
utilized this element to perform vibration analysis of shell structures, and
concluded that the strain-based element is more economic than the conven-
tional displacement-based elements. In a comparative study, Hamadi et al.
[32] investigated the performance of strain-based shell elements in comparison
with the displacement-based elements. This study can be considered an ex-
tension of their previous research about plate elements [30]. In 2015, Mousa
and Djoudi [45] performed vibration analysis on circular cylindrical shells
with oblique ends, by using a new strain-based triangular shell element. For
this element, they assumed linear curvature and third-order normal in-plane
strains. The most-recent strain-based shell element is a flat triangular hybrid
element proposed by Rezaiee-Pajand and Yaghoobi [69]. Trefftz functional
was used in this element to formulate independent internal and boundary
fields. It must be noted that this work is not the only available hybrid
strain-based element and there are other similar studies in the literature.
For instance, To and Liu [77] also proposed a triangular shell element, based
on the Hellinger-Reissner hybrid strain formulation. Moreover, the hybrid
formulation was also utilized for other types of structures. For example, in
2017, Rezaiee-Pajand and Yaghoobi [68] developed a hybrid plane element
with assumed strain field.

In addition to the plate and shell element, the assumed strain approach
was also utilized for developing three-dimensional finite elements. Belounar
and Guerraiche [16] formulated a 3D eight-node brick element by assump-
tion of linear strains. In this formulation, only compatibility criterion was
imposed to the assumed strain field. Guerraiche, Belounar, and Bouzidi [29]
proposed another variant of this element by using a different assumed strain
field. In this new element, they included Poisson’s ratio of the material in
the strain field of the element. In the most-recent study, Messai, Belounar,
and Merzouki [44] suggested a nine-node brick element with linear assumed
strain field. In one of the most recent studies in this field, Rezaiee-Pajand,
Gharaei-Moghaddam, and Ramezani [60] utilized strain-based formulation
and developed a cracked plain element for analysis of cracked structures with
open stable cracks.

7 Discussion and conclusion

In this article, which is the first part of a two-part study, the basic formula-
tion steps of the assumed strain approach for developing plane elements were
presented. In addition, twenty-five of the available strain-based membrane
elements were reviewed, using the unified notations. The reviewed elements
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were categorized into two groups of triangular and quadrilateral elements.
According to the available literature, most of the accessible elements were
formulated by using strain fields, which do not satisfy the equilibrium equa-
tions. Moreover, in many of these elements, the assumed strain field seems
to be resulted from the trial-and-error process. Because no clear justification
was provided by the authors for their selections. Despite this fact, in some
cases, especially the elements proposed by Rezaiee-Pajand and his colleagues,
the concept of Taylor expansion was considered in the selection of assumed
strain components, and in many of these elements, both compatibility and
equilibrium criteria were imposed. It is known for the researchers that utiliz-
ing incomplete polynomials for strain field might lead to incapability of the
element to include Poisson’s effect of strain states. Therefore, in some cases
the authors tried to consider those strain fields with complete polynomial
approximation. It is worth mentioning that the other elements, which do not
consider this limitation, can also provide accurate results.

According to the presented review and in some cases, the same elements
were proposed by different authors, independently. Therefore, this is one of
the main motivations of the present study to provide a comprehensive ref-
erence to be used by authors, which helps prevent such duplicate element
formulation. In addition, it seems that most of the researchers who worked
in this field only followed their own research line and did not take advantage
of the other’s experiences. Accordingly, there are many unanswered ques-
tions about the performance of the strain-based elements that remain to be
answered. For instance, it is widely known that some patterns for distri-
bution of the element degrees of freedom resulted in the singular geometric
matrix, which was shown by A. In addition, it was concluded that distribu-
tion of the degrees of freedom between the element nodes had a considerable
effect on the element performance. Despite these indications, it is not clear
how to prevent this problem and choose an optimal configuration. Due to
these warnings, the application of the higher-order strain fields for membrane
elements requires further investigation. According to these points, in the sec-
ond part of this study, extensive numerical investigations will compare the
performance of the reviewed membrane elements.
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