1. Ehrgott, M. Multicriteria optimization, Springer Verlag, Berlin, 2005.
2. Geoffrion, A. M. Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications 22 (1968), 618-630.
3. Kostreva, M.M., and Ogryczak, W. Linear optimization with multiple equitable criteria, RAIRO Operations Research 33 (3) (1999), 275-297.
4. Kostreva, M.M., Ogryczak, W., and Wierzbicki, A. Equitable aggregations in multiple criteria analysis, European Journal of Operational Research 158 (2) (2004), 362-377.
5. Lorenz, M.O. Methods of measuring the concentration of wealth, American Statistical Association, New Series 70 (1905), 209-219.
6. Luc, D.T. Theory of Vector Optimization, Springer Verlag, Berlin, 1989.
7. Marshall, A.W., and Olkin, I. Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
8. Ogryczak, W. Multiple criteria linear programming model for portfolio selection, Annals of Operations Research 97 (2000), 143-162.
9. Ogryczak, W. Inequality measures and equitable approaches to location problems, European Journal of Operational Research 122 (2) (2000), 374-391.
10. Ogryczak, W., Luss, H., Pioro, M., Nace, D., and Tomaszewski, A. Fair optimization and networks: a survey, Journal of Applied Mathematics 2014 (2014), Article ID 612018, 25 pages.
11. Ogryczak, W., Wierzbicki, A., and Milewski, M. A multi-criteria approach to fair and efficient bandwidth allocation, Omega 36 (2008), 451-463.
12. Ogryczak, W., and Zawadzki, M. Conditional median: a parametric solution concept for location problems, Annals of Operations Research 110 (2002), 167-181.
13. Steuer, R.E. Multiple Criteria Optimization Theory, Computation and Applications, John Wiley and Sons, New York, 1986.
14. Viennet, R., Fonteix, C., and Marc, I. Multicriteria optimization using a genetic algorithm for determining a Pareto set, International Journal of Systems Science 27 (2) (1996), 255-260.
Send comment about this article